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FOREWORD 
 

These notes are an introduction to ellipsoidal geometry related to geodesy.  Many 

computations in geodesy are concerned with the position of points on the Earth's surface 

and direction and distance between points.  The Earth's surface (the terrestrial surface) is 

highly irregular and unsuitable for any mathematical computations, instead a reference 

surface, known as an ellipsoid – a surface of revolution created by rotating an ellipse about 

its minor axis – is adopted and points on the Earth's terrestrial surface are projected onto 

the ellipsoid, via a normal to the ellipsoid.  All computations are made using these 

projected points on the ellipsoidal reference surface; hence there is a need to understand 

the geometry of the ellipsoid. 

 

These notes are intended for undergraduate students studying courses in surveying, 

geodesy and map projections.  The derivations of equations given herein are detailed, and 

in some cases elementary, but they do convey the vital connection between geodesy and 

the mathematics taught to undergraduate students. 

 

The information in the notes is drawn from a number of sources; in particular we have 

followed closely upon the works of G. B. Lauf, Geodesy and Map Projections and R. H. 

Rapp, Geometric Geodesy, and also 'Geodesy' a set of notes produced by the New South 

Wales Department of Technical and Further Education (Tafe). 
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1 PROPERTIES OF THE ELLIPSOID 

The Earth is a viscous fluid body, rotating in space about its axis that passes through the 

poles and centre of mass and this axis of revolution is inclined to its orbital plane of 

rotation about the Sun.  The combination of gravitational and rotational forces causes the 

Earth to be slightly flattened at the poles and the gently undulating equipotential surfaces 

of the Earth's gravity field also have this characteristic.  A particular equipotential surface, 

the geoid, represents global mean sea level, and since the seas and oceans cover 

approximately 70% of the Earth's surface, the geoid is a close approximation of the Earth's 

true shape.  The geoid is a gently undulating surface that is difficult to define 

mathematically, and hence is not a useful reference surface for computation. 

A better reference surface is an ellipsoid, which in geodesy is taken to mean a surface of 

revolution created by rotating an ellipse about its minor axis.  Ellipsoids, with particular 

geometric properties, can be located in certain ways so as to be approximations of the 

global geoid, or approximations of regional portions of the geoid; this gives rise to 

geocentric or local reference ellipsoids.  In any case, the size and shape of ellipsoids are 

easily defined mathematically and they are relatively simple surface to compute upon; 

although not as simple as the sphere.  Knowledge of the geometry of the ellipsoid and its 

generator, the ellipse, is an important part of the study of geodesy. 
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Figure 1:  The reference ellipsoid 
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Figure 1 show a schematic view of the reference ellipsoid upon which meridians (curves of 

constant longitude  ) and parallels (curves of constant latitude  ) form an orthogonal 

network of reference curves on the surface.  This allows a point P in space to be 

coordinated via a normal to the ellipsoid passing through P.  This normal intersects the 

surface at Q which has coordinates of ,   and P is at a height h QP  above the ellipsoid 

surface.  We say that P has geodetic coordinates, , ,h  .  P also has Cartesian coordinates 

x,y,z; but more about these coordinate systems later.  The important thing at this stage is 

that the ellipsoid is a surface of revolution created by rotating an ellipse about its minor 

axis, where this minor axis is assumed to be either the Earth's rotational axis, or a line in 

space close to the Earth's rotational axis.  Meridians of longitude are curves created by 

intersecting the ellipsoid with a plane containing the minor axis and these curves are 

ellipses; as are all curves on the ellipsoid created by intersecting planes.  Note here that 

parallels of latitude (including the equator) are circles; since the intersecting plane is 

perpendicular to the rotational axis, and circles are just special cases of ellipses.  Clearly, 

an understanding of the ellipse is important in ellipsoidal geometry and thus geometric 

geodesy. 

1.1 THE ELLIPSE 
The ellipse is one of the conic sections; a name derived from the way they were first 

studied, as sections of a cone1.  A right-circular cone is a solid whose surface is obtained by 

rotation a straight line, called the generator, about a fixed axis. 

In Figure 2, the generator makes an angle   with the axis and as it is swept around the 

axis is describes the surface that appears to be two halves of the cone, known as nappes, 

that touch at a common apex.  The generator of a cone in any of its positions is called an 

element. 

                                      

1 The ellipse, parabola and hyperbola, as sections of a cone, were first studied by Menaechmus (circa 380 BC 

- 320 BC), the Greek mathematician who tutored Alexander the Great.  Euclid of Alexandra (circa 325 BC - 

265 BC) investigated the ellipse in his treatise on geometry: The Elements.  Apollonius of Perga (circa 262 

BC - 190 BC) in his famous book Conics introduced the terms parabola, ellipse and hyperbola and Pappus of 

Alexandra (circa 290 - 350) introduced the concept of focus and directrix in his studies of projective 

geometry. 
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Figure 2:  The cone and its generator  
 

The conic sections are the curves created by the intersections of a plane with one or two 

nappes of the cone. 

Figure 3:  The conic sections

hyperbola parabola ellipse circle



 

Depending on the angle   between the axis of the cone and the plane, the conic sections 

are: hyperbola  0    , parabola    , ellipse  2    , or circle  2  .  

Note that for 0     the plane intersects both nappes of the cone and the hyperbola 

consists of two separate curves. 
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1.1.1 The equations of the ellipse 

An ellipse can be defined in the following 

three ways: 

(a) An ellipse is the locus of a point kP  

that moves so that the sum of the 

distances r and r' from two fixed points F 

and F' (the foci) separated by a distance 

2d is a constant and equal to the major 

axis of the ellipse, i.e., 

 2r r a   (1) 

a is the semi-major, b is the semi-minor 

axis and d OF OF    is the focal 

distance.  The origin of the x,y coordinate 

system is at O, the centre of the ellipse. 

This definition leads to the Cartesian 

equation of the ellipse.  From Figure 4 and equation (1) we may write 

    2 22 2 2x d y x d y a       

Squaring both sides and re-arranging gives 

 
     2 2 22 2

2

4 4

4 4

a x d y a x d x d

a xd

      

 
 

and 

  2 2 d
x d y a x

a
     

Squaring both sides and gathering the x-terms gives 

 
2 2

2 2 2 2
2

a d
x y a d

a

       
 (2) 

Now, from Figure 4, when kP  on the ellipse is also on the minor axis, r r a   and from 

a right-angled triangle we obtain 

··
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Figure 4:  Ellipse
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 2 2 2 2 2 2 2 2 2; ;a b d b a d d a b       (3) 

Substituting the second of equations (3) into equation (2) and simplifying gives the 

Cartesian equation of the ellipse 

 
2 2

2 2
1

x y
a b

   (4) 

 

(b) If auxiliary circles 2 2 2x y a   

and 2 2 2x y b   are drawn on a 

common origin O of an x,y coordinate 

system and radial lines are drawn at 

angles   from the x-axis; then the 

ellipse is the locus of points kP  that lie 

at the intersection of lines, parallel with 

the coordinate axes, drawn through the 

intersections of the radial lines and 

auxiliary circles. 

This definition leads to the parametric 

equation of the ellipse.  Consider points 

A (auxiliary circle) and P (ellipse) on 

Figure 5.  Using equation (4) and the 

equation for the auxiliary circle of radius 

a we may write 

 
2 2

2 2 2
2 2

   and   1P P
A A

x y
x y a

a b
     

and these equations may be re-arranged as 

 
2

2 2 2 2 2 2
2

   and   A A P P

a
x a y x a y

b
     (5) 

Now the x- coordinates of A and P are the same and so the right-hand sides of equations 

(5) may be equated, giving 

·
·

·

·
·

· A

B P

x

y



a

b

O

Figure 5:  Ellipse and auxiliary circles
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2

2 2 2 2
2A P

a
a y a y

b
    

This leads to the relationship 

 P A

b
y y

a
  (6) 

Hence, we may say that the y-coordinate of the ellipse, for an arbitrary x-coordinate, is b a  

times the y-coordinate for the circle of radius a at the same value of x. 

Now, we can use equation (6) and Figure 5 to write the following equations 

 
cos

     and     
sin

P A
A

A P A

x xx a
by a y y
a







 
 

From which we can write parametric equations for the ellipse 

 
cos

sin

x a

y b








 (7) 

 

Similarly, considering points B and P; using equation (4) and the equation for the 

auxiliary circle of radius b we may write 

 
2 2

2 2 2
2 2

   and   1P P
B B

x y
x y b

a b
     

and these equations may be re-arranged as 

 
2

2 2 2 2 2 2
2

   and   B B P P

b
y b x y b x

a
     (8) 

Now the y- coordinates of B and P are the same and so the right-hand sides of equations 

(8) may be equated, giving 

 
2

2 2 2 2
2B P

b
b x b x

a
    

This leads to the relationship 

 P B

a
x x

b
  (9) 
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And we may say that the x-coordinate of the ellipse, for an arbitrary y-coordinate, is a b  

times the x-coordinate for the circle of radius b at the same value of y. 

Using equation (9) and Figure 5 we have 

 
cos

     and     
sin

B P B

B P B

ax b x x
b

y b y y





 

 
 

giving, as before, equations (7); the parametric equations for an ellipse.   

Note that squaring both sides of equations (7) gives 2 2 2 2 2 2cos  and sinx a y b    and 

these can be re-arranged as 
2 2

2 2
2 2

cos  and sin
x y
a b

   .  Then using the trigonometric 

identity 2 2sin cos 1    we obtain the Cartesian equation of the ellipse:  
2 2

2 2
1

x y
a b

  . 

 

(c) An ellipse may be defined as the locus of a point P that moves so that its distance 

from a fixed point F, called the focus, bears a constant ratio, that is less than unity, to its 

distance from a fixed line known as the directrix, i.e., 

 
PF

e
PN

  (10) 

where e is the eccentricity and 1e   for an ellipse. 
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·
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Figure 6:  Ellipse (focus-directrix)
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From Figure 6 and definition (c), the following relationships may be obtained 

     and    
FE FE

e e
EL E L


 


 

giving    , FE e FL FE e E L    and  FE FE e EL E L    . 

Now since  2 2FE FE OE a    and  2EL E L OL   we may write 

 
a

OL
e

  (11) 

Also 

 

 
   

   

   

2

1 2

2 1 2

FE FE e E L EL

EE FE e EE

EE e FE

a e FE

   

  

  

 

 

hence 

  1FE a e   (12) 

And, since    2 2EE FE OF    and 2EE a   the focal length OF is given by 

 OF ae  (13) 

In Figure 6, the line GG', perpendicular to the major axis and passing through the focus F 

is known as the latus rectum2 and l FG  is the semi latus rectum. 

Using equations (11) and (13), the perpendicular distance from G to the directrix DD' is 
a

OL OF ae
e

   , and employing definition (c) gives 
l

ea
ae

e




 and the semi latus 

rectum of the ellipse is 

  21l a e   (14) 

In Figure 6, p FL OL OF    where OL and OF are given by equations (11) and (13). 

                                      

2 Latus rectum means "side erected" and the length of the latus rectum was used by the ancient Greek 

mathematicians as a means of defining ellipses, parabolas and hyperbolas. 
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Using these results gives 

  21
a

p e
e

   (15) 

Also, in Figure 6, let PF r ,   be the angle between PF and the x-axis; then 

cosPN p r   .  Using definition (c), 
PF

e
PN

 , hence cos
r

p r
e

  , which can be re-

arranged to give a polar equation of an ellipse (with respect to the focus F) 

 
1 cos

ep
r

e 



 (16) 

Using equations (15) and (14) gives two other results 

 
 21

1 cos

a e
r

e 





 (17) 

 
1 cos

l
r

e 



 (18) 

 

Another polar equation of the ellipse can 

be developed considering Figure 7. 

Let OP r  and   be the angle between 

OP and the x-axis, then 

 

2 2 2

2 2 2

cos cos
  and  

sin sin

x r x r

y r y r

 

 

 

 
 

Substituting these expressions for 2x  and 
2y  into the Cartesian equation for the 

ellipse [equation (4)] and re-arranging gives 

a polar equation of the ellipse (with respect to the origin O) 

 
2 2

2 2 2

1 cos sin
r a b

 
   (19) 

or 
2 2 2 2sin cos

ab
r

a b 



 (20) 

· P

x

y

O

Figure 7:  Ellipse (polar equation) 
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1.1.2 The eccentricities e and e' of the ellipse 

The eccentricity of an ellipse is denoted by e.  From Figure 6 and equation (13) it can be 

defined as 

 
OF

e
a

  (21) 

From Figure 2 and equations (3) 2 2OF d a b    and 
2 2a b

e
a


 .  The more 

familiar way that eccentricity e is defined in geodesy is by its squared-value 2e  as 

 
2 2 2

2
2 2

1
a b b

e
a a


    (22) 

Another eccentricity that is used in geodesy is the 2nd-eccentricity, usually denoted as e  

and similarly to the (1st) eccentricity e, the 2nd-eccentricity e  is defined by its squared-

value 2e  as 

 
2 2 2

2
2 2

1
a b a

e
b b
     (23) 

1.1.3 The flattening f of the ellipse 

The flattening of an ellipse, denoted by f, (and also called the compression or ellipticity) is 

the ratio which the excess of the semi-major axis over the semi-minor axis bears to the 

semi-major axis.  The flattening f is defined as 

 1
a b b

f
a a


    (24) 

1.1.4 The ellipse parameters c, m and n 

In certain geodetic formula, the constants c, m and n are used.  They are defined as 

 
2a

c
b

  (25) 

 
2 2

2 2

a b
m

a b





 (26) 

 
a b

n
a b





 (27) 

Note:  c is the polar radius of the ellipsoid and m is sometimes called the 3rd-eccentricity squared.  A 2nd-

flattening is defined as  f a b b    with a 3rd-flattening as    f n a b a b     . 
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1.1.5 Interrelationship between ellipse parameters 

The ellipse parameters a, b, c, e, e , m and n are related as follows 

  2

2

1
1 1

11

b n
a b e c c f

ne

         
 (28) 

    2 2
22

1 1 1
11

a c
b a f a e c e

ee
       


 (29) 

   2

2

1 1 1
1 1

1 11

b e n m
f e

a e n me

 
       

  
 (30) 

 2

2

1 2
1 1 1

11

n
f e

ne
     


 (31) 

  
 

2
2

22

4 2
2

1 1 1
e n m

e f f
e n m


    

  
 (32) 

  221 1e f     (33) 

 
 

   

2
2

2 22

2 4 2
1 1 11

f fe n m
e

e n mf

    
  

 (34) 

   2 21 1 1e e     (35) 

 
 
 2 2

2 2
11 1

f f n
m

nf


 

 
  (36) 

 
2 2

2 2

1 1 1 1
2 1 1 1 1

f e e
n

f e e

   
  

    
 (37) 

 

··
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Figure 8:  Ellipse geometry
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1.1.6 Geometry of the ellipse 

 

A

P

x

y



O

Figure 9:  Ellipse and auxiliary circle

 

H

D E

tangent to auxiliary circle
tangent to ellipse

90
°



a

b
a r

x

y

no
rm

al

E'

Q

Q'
auxiliary circle
x y a2 22 

M G

 

 

In Figure 9, the angles ,   and   are known as latitudes and are respectively, angles 

between the major axis of the ellipse and (i) the normal to the ellipse at P, (ii) a normal to 

the auxiliary circle at A, and (iii) the radial OP.  The x,y Cartesian coordinates of P can 

be expressed as functions of   and relationships between ,   and   established.  These 

functions can then be used to define distances PH, PD and OH in terms of the ellipse 

parameters 2 and a e .  These will be useful in later sections of these notes. 
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x and y in terms of   

Differentiating equation (4) with respect to x gives 

 
2 2

2 2
0

x y dy
a b dx

   

and re-arranging gives 

 
2

2

dy b x
dx a y

   

Now by definition, 
dy
dx

 is the gradient of the tangent to the ellipse, and from Figure 9 

  
2

2
tan 90 cot

dy b x
dx a y

        (38) 

from which we obtain 
2

2
tan

b
y x

a
   (39) 

and 
2

2 tan
a y

x
b 

  (40) 

Substituting equation (39) into the Cartesian equation for the ellipse (4) gives 

 

2 2
2 2

2 4

2 2 2

2 2 2

tan 1

sin
1 1

cos

x b
x

a a
x b
a a






 

        

 

Now, from equation (30) 
2

2
2

1
b

e
a

   hence 

 

 
2 2

2
2 2

2 2 2 2 2

2 2

2 2 2

2 2

sin
1 1 1

cos

cos sin sin
1

cos

1 sin
1

cos

x
e

a

x e
a

x e
a




  





         
        

       

 

giving 

 
 1 22 2

cos

1 sin

a
x

e







 (41) 
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Similarly, substituting equation (40) into the Cartesian equation for the ellipse (4) gives 

 

2 2 2

4 2 2

2 2 2

2 2 2

1
tan

cos
1 1

sin

a y y
b b

y a
b b






 

        

 

Now, from equation (30) 
2

2 2

1
1

a
b e




 hence 

 

 

 

 

2 2

2 2 2

2 2 2 2 2

2 2 2

2 2 2

2 2 2

cos
1 1

1 sin

sin sin cos
1

1 sin

1 sin
1

1 sin

y
b e

y e
b e

y e
b e




  





        
        

       

 

giving 

 
 

2

1 2
2 2

1 sin

1 sin

b e
y

e









 (42) 

Equations (41) and (42) may be conveniently expressed as another set of parametric 

equations for the ellipse 

 
2

2 2 2

cos

1
sin

1 sin

a
x

W
b e

y
W

W e












 

 (43) 

Equivalent expressions may be obtained for x and y by using the 2nd-eccentricity 2e .  

Substituting for 2e  [using equation (32)] in the third of equations (43) gives 

 

 

2
2 2

2

2 2 2

2

2 2

2

1 sin
1

1 sin
1

1 1 sin

1

e
W

e
e e

e

e

e








 


  




 



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and 
2 2

2
2

1 cos
1
e

W
e





.  Putting 2 2 21 cosV e    and using equation (30) gives 

2 2
2 2

2 21
V b

W V
e a

 


.  Using these relationships gives another set of parametric equations 

for the ellipse 

 

2

2

2 2 2

cos
cos

sin

1 cos

a c
x

bV V
b

y
V
a

c
b

V e








 





 

 (44) 

Also the relationships between W and V may be useful 

 
2

2 2 2 2 2 21 sin ;  1 cos   and  
a

W e V e c
b

       (45) 

  
2 2

2 2 2 2 2
2 2

1
1

b b V
W V V V e

a c e
    


 (46) 

  
2 2

2 2 2 2 2
2 2

1
1

a c W
V W W W e

b b e
    


 (47) 

 

Length of normal terminating on minor axis (PH) 

 
 1 22 2cos 1 sin

x a a c
PH

W Ve 
   


 (48) 

 

Length of normal terminating on major axis (PD) 

 
 

 
     

2
2 2 2

1 22 2

1
1 1 1

sin 1 sin

a ey a c
PD PH e e e

W Ve 


       


 (49) 

 

Length DH along normal 

 2 2a c
DH PH PD e e

W V
     (50) 

Length OH along minor axis 

 2 2sin sin sin
a c

OH DH e e
W V

      (51) 
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Relationship between latitudes 

Differentiating the equations (7) with respect to   gives 

 sin ; cos
dx dy

a b
d d

 
 

    

then 

 cot
dy dy d b
dx d dx a





    (52) 

Now by definition, 
dy
dx

 is the gradient of the tangent to the ellipse, and 

  tan 90 cot
dy
dx

      (53) 

Equating equations (52) and (53) gives relationships between  and    

  2tan tan 1 tan 1 tan
b

e f
a

         (54) 

 

Also, from Figure 9 and equations (43) 

 
 21 sin

tan
cos

a ey W
x W a







   

giving relationships between  and    

    
2

22
2

tan 1 tan tan 1 tan
b

e f
a

         (55) 

 

And with equations (54) and (55) the relationships between  and    are 

  2tan 1 tan tan 1 tan
b

e f
a

         (56) 
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1.1.7 Curvature 

To calculate distances on ellipses (and ellipsoids) we need to know something about the 

curvature of the ellipse.  Curvature at a point on an ellipse can be determined from general 

relationships applicable to any curve. 

 

The curvature   (kappa) of a curve  y y x  

at any point P on the curve, is the rate of 

change of direction of the curve with respect 

to the arc length; (i.e., the rate of change in 

the direction of the tangent with respect to 

the arc length).  The curvature is defined as 

 
0

lim
s

d
s ds

 



   (57) 

The gradient of the tangent to the curve is, by 

definition, (the 1st-derivative) tan
dy
dx

 , 

and the 2nd-derivative is 

 
2

2 2
2

sec sec
d y d d ds
dx dx ds dx

 
    (58) 

But, from equation (57), 
d
ds


   and from the elemental triangle we obtain 

1
sec

cos
ds
dx




  .  Substituting these results into equation (58) gives 
2

3
2

sec
d y
dx

   and 

a re-arrangement gives the curvature as 

 

2

2

3sec

d y
dx


  (59) 

The denominator of equation (59) can be simplified by using the trigonometric identity 
2 2sec 1 tan   ; so  1 22sec 1 tan     and  3 23 2sec 1 tan    .  Now, since 

tan
dy
dx

 , then 
2

2tan
dy
dx


    

, thus 
3 22

3sec 1
dy
dx


            

.  This result for 3sec   can 

be substituted into equation (59) to give the equation for curvature as 

·

·s

y  y x

y

x

P
1

P
2

   + 

tangent

cu
rv

e

Figure 10:  Curvature

dx

dyds

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   

2

2

3 2 3 22 2

2

2

11

where    and  

d y
ydx

dy y
dx

dy d y
y y

dx dx




   
           

  

 (60) 

 

1.1.8 Radius of curvature 

The radius of curvature   (rho) for a point 

 ,P x y  on a curve  y y x  is defined as being 

1
for 0 and for 0   


      (61) 

The radius of curvature is the radius of the 

osculating (kissing) circle that approximates the 

curve at that point. 

In Figure 11, the radius of curvature at P is 

CP   and  ,C u v  is the centre of curvature 

whose coordinates are ,x u y v  . 

An equation for the radius of curvature   can 

be derived in the following manner. 

From equation (38) the gradient of the tangent to the ellipse is 

 
cos

cot
sin

dy
y

dx





       (62) 

and the 2nd-derivative is 

 
2

2 2

1 1
tan sin

d y d d d
y

dx d dx dx
 

  

        
 (63) 

The derivative 
d
dx


 can be obtained from equation (41) where 

 
 1 22 2

cos

1 sin

a
x

e







 

·

·

y  y x

y

x

P

ta
ng

en
t

cu
rv

e

Figure 11:  Centre of Curvature
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and using the quotient rule for differentiation: 
2

du dv
v ud u dx dx

dx v v

    
 gives 

 

      

 
 

 
  

 
 

1 2 1 22 2 2 2 21
2

2 2

2 2 2 2
3 22 2

2 2 2
3 22 2

2

3 22 2

1 sin sin cos 1 sin 2 sin cos

1 sin
sin

1 sin cos
1 sin

sin
1 sin cos

1 sin

1 sin

1 sin

e a a e edx
d e

a
e e

e

a
e

e

a e

e

     

 


 



 







   




  


  







 

hence 

 
 

 

3 22 2

2

1 sin

1 sin

ed
dx a e








 (64) 

Substituting equation (64) into equation (63) gives 

 
 
 

3 22 2

2 3

1 sin

1 sin

e
y

a e






 


 (65) 

Now the equation for curvature (61) can be written as 

 
 22 3

2 3

1 y

y






 

and substituting equations (62) and (65) gives 

 

 

 

2 32 3 2 22
2 3

2 2 2

2 32 3 2

2 2

1 sincos
1

sin 1 sin

1

1 sin

a e

e

a e

e




 



        






 

giving the equation for radius of curvature   for the ellipse as 

 
 

 
 2 2

3 2 3 32 2

1 1

1 sin

a e a e c
W Ve




 
  


 (66) 

Note that equations (45), (46) and (47) have been used in the simplification. 
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1.1.9 Centre of curvature 

In Figure 11, the centre of curvature for a point  ,P x y  on a curve  y y x  is  ,C u v  

which is the centre of the osculating circle of radius   that approximates the curve at P; 

and C lies on the normal to the curve at P. 

The coordinates ,x u y v   of the centre of curvature can be obtained from equation 

(61) and the general equations of a tangent and a normal to a curve: 

 

 

 

0 0

0 0

tangent:

1
normal:

tan

y y m x x

y y x x
m

dy
m y

dx


  

   

   

 (67) 

The centre of curvature  ,C u v  lies (i) on the normal passing through  ,P x y  and (ii) at a 

distance   from P measured towards the concave side of the curve  y y x . 

This leads to two equations: 

(equation of normal)  
1

v y u x
y

   


 (68) 

(Pythagoras)    
 32

2 22
2

1 y
u x v y

y



    


 (69) 

Re-arranging equation (68) as    u x y v y     and substituting into equation (69) 

gives 

 

     
 

     

 
 

32
2 2 2

2

32
2 2

2

22
2

2

1

1
1

1

y
y v y v y

y

y
v y y

y

y
v y

y


    




  




 



 

and 

 
21 y

v y
y


  


 (70) 
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Note that when the curve is concave upward, 0y    and since C lies above P then 

0v y   and the proper sign in equation (70) is +.  This is also the case when 0y    

and the curve is concave downward so 

 
21 y

v y
y


 


 (71) 

Substituting equation (71) into equation (68) gives 

  

21 1y
u x

y y


  

 
 (72) 

Re-arranging equations (71) and (72) gives the equations for the coordinates  ,u v  of the 

centre of curvature C as 

 

 2

2

1

1

y y
u x

y

y
v y

y

 
 




 



 (73) 

 

1.1.10 The evolute of the ellipse 

The evolute of a curve is the locus of the 

centres of curvature. 

In Figure 12, the evolute of the ellipse is 

shown.  At 1P  the ellipse has a radius of 

curvature 1  and the centre of curvature 

is at 1C , at 2P  the radius of curvature is 

2  and centre of curvature at 2C  and at 

3P  the radius of curvature is 3  and 

centre of curvature at 3C .  The evolute 

is the curve joining all the possible 

centres of curvature. 

Parametric equations of the evolute are 

obtained in the following manner. 

·

·

·

·

·

·
P1

P2

P3

C

C

C

3

2

1

2 x

y

evolute



A

auxiliary circle

ellipse

Figure 12:  Ellipse, evolute and auxiliary circle
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Parametric equations of the ellipse are given by equations (7) as 

 cos ; sinx a y b    

Differentiating with respect to   gives 

 sin ; cos
dx dy

a b
d d

 
 

    

and the chain-rule for differentiation gives the gradient of the tangent to the ellipse as 

     or    
tan tan

dy dy d b b
y

dx d dx a a


  
      (74) 

The second-derivative is 

 
2

2 2 2 3 2 3
    or    

sin sin sin
d y b d b b

y
dx a dx a a


  

      (75) 

Substituting equations (74) and (75) into the equations for the centre of curvature (73) 

gives 

 
 

3 3

2 3 3

2 3

cos cos
1 sin sin

sin

b b
y y a au x x by

a

 
 



                    

 

expanding the right-hand-side gives 

 
   

  

3 3

3 3

2 3

2 2 3 3 2 3

3 3

2 2 2 3

2 2 2 3

cos cos
sin sin

sin

sin cos cos sin

sin

sin cos cos

cos 1 cos cos

b b
a au x b

a

a b b a
x

a b

a b
x

a

ax a b

a

 
 



   



  

  

               
            
        
  



 

and since cosx a   

 2 2 2 3 2 3cos cos cos cosau a a a b        
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then 

  2 2 3cosau a b    (76) 

Similarly, substituting equations (74) and (75) into the equations for the centre of 

curvature (73) gives 

 

2 2

2 2 2

2 3

cos
1

1 sin

sin

b
y av y y by

a






                   

 

expanding the right-hand-side gives 

 

 

  

2 2 2 3

2 2

2 2 2 2 2 3

2 2

2 3 2 2

2 3 2 2

cos sin
1

sin

sin cos sin
sin

sin cos sin

sin 1 sin sin

b a
v y

a b

a b a
y

a b

a b
y

b

by a b

b

 


  


  

  

                    
         
        
  



 

and since siny b   

 2 2 3 2 2 3sin sin sin sinbv b a b b        

then 

  2 2 3sinbv a b     (77) 

Using equations (76) and (77); and equations (22) and (23), a set of parametric equations 

of the evolute of an ellipse are 

 

2 2
3 2 3

2 2
3 2 3

cos cos

sin sin

a b
x ae

a

a b
y be

b

 

 

     
        

 (78) 
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1.2 SOME DIFFERENTIAL GEOMETRY 
To establish some properties of the ellipsoid, differential geometry is useful for our 

purposes; where we take differential geometry to mean the study of curves and surfaces by 

means of calculus.  Using differential geometry we are able to define a geodesic, which is a 

special curve on an ellipsoid defining the shortest path between two points, and give two 

theorems; Meunier's theorem and Euler's theorem that are fundamental to geometric 

geodesy.  These two theorems enable us to derive equations for radii of curvature of 

normal sections of the ellipsoid and equations for mean radii of curvature.  Differential 

geometry relies heavily on vector representation of curves and surfaces and the two vector 

products; the dot (or scalar) product and the cross (or vector) product.  Some familiarity 

with these terms (and manipulations) and vector notation is assumed. 

1.2.1 Differential Geometry of Space Curves 

A space curve may be defined as the locus of the terminal 

points P of a position vector  tr  defined by a single 

scalar parameter t, 

        t x t y t z t  r i j k  (79) 

, ,i j k  are fixed unit Cartesian vectors in the directions of 

the x,y,z coordinate axes.  As the parameter t varies the 

terminal point P of the vector sweeps out the space curve 

C.  Let s be the arc-length of C measured from some 

convenient point on C, so that 

2 2 2ds dx dy dz
dt dt dt dt

                        
 or 

ds d d d
dt dt dt dt

 
r r r

   and 
d d

s dt
dt dt

 
r r
  

Hence s is a function of t and x,y,z are functions of s. 

[Note that a b  denotes the dot product (or scalar product) of two vectors and if 

1 2 3a a a  a i j k  and 1 2 3b b b  b i j k , then 1 1 2 2 3 3cos a b a b a b   a b a b .  ,a b  

are magnitudes or lengths of the vectors,   is the angle between them and the dot product is 

a scalar quantity equal to the projection of the length of a onto b.  If a is orthogonal to b, 

then 0a b .] 

x y

z
r

sp
ac

e  c
urve P

r + dr

··

dr

s

Q

i j
k

C

Figure 13:  Space curve C
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Let Q, a small distance s  along the curve from P, have a position vector r r .  Then 

PQ r


 and s r  .  Both when s  is positive or negative 
s


r

 approximates to a unit 

vector in the direction of s increasing and 
d
ds
r
 is a tangent vector of unit length denoted by 

t̂ ; hence 

 ˆ d dx dy dz
ds ds ds ds

   
r

t i j k  (80) 

Since t̂  is a unit vector then ˆ ˆ 1t t  and differentiating with respect to s using the rule 

 
d dv du

uv u v
dx dx dx

   gives  
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ2 0
d d d d
ds ds ds ds

        
t t t

t t t t t    .  This leads to 
ˆ

ˆ 0
d
ds


t

t  

from which we deduce that 
ˆd

ds
t
 is a vector orthogonal to t̂  and write 

 
ˆ

ˆ
d
ds

 
t

k n , 0   (81) 

ˆd
ds
t
 is called the curvature vector k, and should not be confused with the unit vector in the 

direction of the z-axis.  n̂  is a unit vector called the principal normal vector,   the 

curvature and 
1




  is the radius of curvature.  The circle through P, tangent to t̂  with 

this radius   is called the osculating circle.  Also 
ˆ

ˆ
d
ds


t

n ; i.e., n̂  is the unit vector in 

the direction of k. 

Let b̂  be a third unit vector defined by the vector cross product 

 ˆ ˆ ˆ b t n  (82) 

thus t̂ , n̂ , and b̂  form a right-handed triad. 

[Note that a b  denotes the cross product (or vector product) of two vectors and if 

1 2 3a a a  a i j k  and 1 2 3b b b  b i j k , then ˆsin   a b a b p p .  ,a b  are 

magnitudes,   is the angle between the vectors and p̂  is a unit vector of the vector p that is 

perpendicular to the plane containing a and b.  The direction of p is given by the right-hand-

screw rule, i.e., if a and b are in the plane of the head of a screw, then a clockwise rotation of 

a to b through an angle   would mean that the direction of p would be the same as the 

direction of advance of a right-handed screw turned clockwise.  The cross product can be 

written as the expansion of a determinant as 
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     

     1 2 3 2 3 3 2 1 3 3 1 1 2 2 1

1 2 3

a a a a b a b a b a b a b a b

b b b

 

        p a b i j k

i j k
 

Note here that the mnemonics      , ,    are an aid to the evaluation of the determinant.  

The perpendicular vector 1 2 3p p p  p i j k  has scalar components  1 2 3 3 2p a b a b  , 

 2 1 3 3 1p a b a b    and  3 1 2 2 1p a b a b  .  The magnitude (or geometric length) of p is 

denoted as p  and 2 2 2
1 2 3p p p  p  and the unit vector of p, denoted as p̂  is 

1 2 3ˆ
p p p

   
p

p i j k
p p p p

.] 

Differentiating equation (82) with respect to s gives 

  
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

d d d d d d
ds ds ds ds ds ds

           
b t n n n

t n n t n n t t  

then 

  
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ 0

d d d
ds ds ds

       
b n n

t t t t t    

so that 
ˆd

ds
b

 is orthogonal to t̂ .  But from ˆ ˆ 1b b  it follows that 
ˆ

ˆ 0
d
ds


b

b  so that 
ˆd

ds
b

 is 

orthogonal to b̂  and so is in the plane containing t̂  and n̂ . 

Since 
ˆd

ds
b

 is in the plane of t̂  and n̂ , and 

is orthogonal to t̂ , it must be parallel to 

n̂ .  The direction of 
ˆd

ds
b

 is opposite n̂  as it 

must be to ensure the cross product 
ˆ

ˆd
ds


b

t  

is in the direction of b̂ .  Hence 

 
ˆ

ˆ
d
ds

 
b

n , 0   (83) 

We call b̂  the unit binormal vector,   the 

torsion, and 
1


 the radius of torsion.  t̂ , n̂  

and b̂  form a right-handed set of 

orthogonal unit vectors along a space curve.   

x y

z

P

rectifying 
plane

osculating plane

normal plane

i j
k

t
b

nr

Figure 14:  The tangent , principal normal 

and binormal  to a space curve

t n

                b
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The plane containing t̂  and n̂  is the osculating plane, the plane containing n̂  and b̂  is 

the normal plane and the plane containing t̂  and b̂  is the rectifying plane.  Figure 14 

shows these orthogonal unit vectors for a space curve. 

Also ˆ ˆˆ  n b t  and the derivative with respect to s is 

  
ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ

d d d d
ds ds ds ds

               
n b t

b t t b n t b n b t  (84) 

Equations (81), (83) and (84) are known as the Frenet-Serret formulae. 

 

ˆ
ˆ

ˆ
ˆ

ˆ ˆ ˆ

d
ds

d
ds
d
ds





 



 

 

t
n

b
n

n
b t

 (85) 

or in matrix notation 

 

ˆ ˆ0 0
ˆ ˆ0 0

0ˆ ˆ

d ds

d ds

d ds





 

                                 

t t

b b

n n

 (86) 

These formulae, derived independently by the French mathematicians Jean-Frédéric 

Frenet (1816–1900) and Joseph Alfred Serret (1819–1885) describe the dynamics of a point 

moving along a continuous and differentiable curve in three-dimensional space.  Frenet 

derived these formulae in his doctoral thesis at the University of Toulouse; the latter part 

of which was published as 'Sur quelques propriétés des courbes à double courbure', (some 

properties of curves with double curvature) in the Journal de mathématiques pures et 

appliqués (Journal of pure and applied mathematics), Vol. 17, pp.437-447, 1852.  Frenet 

also explained their use in a paper titled 'Théorèmes sur les courbes gauches' (Theorems on 

awkward curves) published in 1853.  Serret presented an independent derivation of the 

same formulae in 'Sur quelques formules relatives à la théorie des courbes à double 

courbure' (Some formulas relating to the theory of curves with double curvature) published 

in the J. de Math. Vol. 16, pp.241-254, 1851 (DSB 1971). 
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1.2.2 Radius of curvature of ellipse using differential geometry 

As an application of the differential geometry of a space curve, consider the ellipse in the 

x-y plane in Figure 15.  An expression for the curvature  , and hence the radius of 

curvature 1  , can be derived in the following manner. 

Using the cross product and the first of the Frenet-Serret formula [equation (85)] 

 
2

2

ˆ
ˆ ˆ ˆ ˆˆ

d d d d
ds ds ds ds


         

t r r
t n t t t  (87) 

Now, from equation (82), ˆˆ ˆ t n b , so ˆˆ ˆ  t n b  and also, from equation (80), ˆ
d
ds


r

t ; 

so equation (87) becomes 

 
2

2
ˆ d d

ds ds
  

r r
b  (88) 

Now, since b̂  is a unit vector, then ˆ ˆ   b b ; so taking the magnitude of both sides 

of equation (88) gives an expression for the curvature as 

 
2

2

d d
ds ds

  
r r

 (89) 

r is the position vector of P on the ellipse, 

and r is given by equation (79) with 

parametric latitude   replacing the 

general parameter t, 

        x y z     r i j k  (90) 

t̂  and n̂  are the unit tangent vector and 

unit normal vector respectively, both of 

which are shown on Figure 15.  Note that 

t̂  is in the direction of increasing 

parametric latitude   and n̂  is directed 

towards the centre of curvature C. 

Using the chain rule for derivatives and 

the rule  
d dv du

uv u v
dx dx dx

  , the elements of the right-hand-side of equation (89) can be 

expressed in terms of the parametric latitude   as 

·

· P

C

 x

y

evolute



A

auxiliary circle

ellipse

Figure 15:  

t

n
a

^

^
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d d d
ds d ds





r r

 (91) 

And 

 

2

2

2

2

22 2

2 2

d d d d d d
ds ds ds ds d ds

d d d d d d
d ds ds ds ds ds

d d d d d d
d ds ds d d ds

d d d d
d ds d ds




 


  
  

 
 

          
             

     

     

r r r

r r

r r

r r
 (92) 

Now, substituting equations (91) and (92) into equation (89) gives 

 

22 2

2 2

22 2

2 2

32

2
0

d d d d d d
d ds d ds d ds

d d d d d d d d
d ds d ds d ds d ds

d d d
d d ds

d d
d

  


  

   
   


 



                        
                         

              

 

r r r

r r r r

r r

r 32

2

d
d ds




    
r

 (93) 

In equation (93), an expression for the term 
d
ds


 can be determined as follows.  From 

equations (80) and (90) we may write 

 ˆ d d d dx dy dz d
ds d ds d d d ds

 
   

        
r r

t i j k  

Taking the dot product of the unit vector t̂  with itself gives 

 
2 2 2 2

ˆ ˆ 1
dx dy dz d
d d d ds


  

                                         
t t  

and we may write 

 
2 2 2

1 1d
ds ddx dy dz

dd d d



  

 
                         

r
 (94) 
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Substituting equation (94) into equation (93) gives the expression for curvature as 

 

2

2

3

d d
d d

d
d

 







r r

r
 (95) 

We can now use equation (95) to derive an equation for radius of curvature 
1




 . 

Parametric equations of the ellipse in the x-y plane are [see equations (7)] 

 

 

 

 

cos

sin

0            where 0 and 0

x x a

y y b

z z a b

 

 



 

 

   

 

and the position vector r is 

 cos sin 0a b   r i j k  

The derivatives are 

 2

2

sin cos 0

cos sin 0

d
a b

d

d
a b

d

 


 


   

   

r
i j k

r
i j k

 

and the cross product in equation (95) is 

 

     

 
2

2 2
2

sin cos 0 0 0 sin cos

cos sin 0

d d
a b ab ab

d d
a b

   
 

 

 

      

 

i j k
r r

i j k  

and 

  
2

22 2 2 2
2

0 0 sin cos
d d

ab ab ab
d d

 
 
     

r r
 

  
3

3 22 2 2 2sin cos
d

a b
d

 


 
r

 

Substituting these results into equation (95) and taking the reciprocal gives 

 
 3 22 2 2 2sin cosa b

ab

 



  (96) 
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The term 2 2 2 2sin cosa b   in equation (96) can be simplified in the following manner 

  

2 2
2 2 2 2 2 2 2

2

2 2 2 2

sin
sin cos cos cos

cos

cos tan

a
a b b

a b


   



 

  

   (97) 

Using equation (54) that gives the relationships been tan  and tan  we may write 

 2 2 2 2tan tana b   (98) 

and from the parametric equations of an ellipse (7) and equations (43) we equate the x-

coordinate, which leads to 

 
2

2
2 2

cos
cos

1 sine








 (99) 

Substituting equations (98) and (99) into equation (97) gives 

 

   

  

 

2
2 2 2 2 2 2 2

2 2

2
2 2

2 2

2
2 2

2 2

2

2 2

cos
cos tan tan

1 sin

cos
1 tan

1 sin

cos
sec

1 sin

1 sin

a b b b
e

b
e

b
e

b
e


  















  


 








 (100) 

Substituting equation (100) into equation (97) gives 

 
2

2 2 2 2
2 2

sin cos
1 sin

b
a b

e
 


 


 (101) 

Substituting equation (101) into equation (96) gives 

 
 

3 22

2 2 2

3 22 2 2

1 sin

1 sin

b
e b a

ab a e






     
 


 

and using equations (30) (45) and (47) 

 
 

 
 2 2

3 2 3 32 2

1 1

1 sin

a e a e c
W Ve




 
  


 (102) 

This is identical to equation (66) which was derived from classical methods. 
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1.2.3 Differential Geometry of Surfaces 

Suppose a surface S is defined by the two-

parameter vector equation 

       , , , ,u v x u v y u v z u v   r r i j k  

 (103) 

where u and v are independent variables 

usually called curvilinear coordinates.  By 

holding one of the parameters u or v fixed, 

the position vector r traces out parametric 

curves  constantu   and  constantv   

on the surface S.  These parametric curves 

are also sometimes referred to as u-curves 

and v-curves. 

The vectors  

 
u

v

x y z
u u u u

x y z
v v v v

   
   

   
   

   
   

r
r i j k

r
r i j k

 (104) 

are both tangent vectors to the surface S and ur  is tangential to the parametric curve 

 constantv   and vr  is tangential to the parametric curve  constantu  .  ur  and vr  are 

not unit vectors and they do not coincide in direction (except perhaps at an isolated point) 

so that in general u vr r  is not a null vector.  Higher order derivatives are expressed as 

 
2 2 2

2 2
, , , etcuu vv uvu u u v v v v u u v

                                            
r r r r r r

r r r  (105) 

 

Using the Theorem of the Total Differential (Sokolnikoff & Redheffer 1966) we may write 

 u vd du dv du dv
u v

 
   

 
r r

r r r  (106) 

and dr  is a position vector known as the first order surface differential. 

z

yx

r

rv

ru

S

P
·

Nv  constant=

u  constant=

Figure 16:  Curved surface with parametric

                curves   and u v

^
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The second order surface differential 2d r  is given as 

 

   
   

2

2 22uu uv vv

d du dv du du dv dv
u u v v u v

du dudv dv

     
   

     

  

r r r r
r

r r r  (107) 

 

The First Fundamental Form (FFF) of a surface is given by 

 

 

   
   

   

2

2 2

2 2

FFF

2

2

u v u v

u u u v v v

ds d d

du dv du dv

du dudv dv

E du F dudv G dv

 

  

  

  

r r

r r r r

r r r r r r





  

 (108) 

where 

 

2

2

u u u

u v

v v v

E

F

G

 



 

r r r

r r

r r r







 (109) 

are the First Fundamental Coefficients (FFC). 

If    ,u u t v v t   are scalar functions of a single scalar parameter t, then 

         , ,u v u t v t t  r r r r  (110) 

is the one-parameter position vector equation of a curve on the surface.  The arc-length s 

of this curve between 1t t  and 2t t  is given by 

 

2 2 2

1 1 1

2

1

1 2

1 2

2 2

2

t t t

u v
t t t

t

u v u v
t

d du dv d d
s dt dt dt

dt dt dt dt dt

du dv du dv
dt

dt dt dt dt

du du dv dv
E F G

dt dt dt dt

       

                  
                                    

  



r r r
r r

r r r r





2

1

1 2
t

t
dt  (111) 

Also 

 
1 22 2

2
ds d du du dv dv

E F G
dt dt dt dt dt dt

                                     

r
 (112) 
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Since  and u vr r  are tangent vectors along the  constantv   and  constantu   parametric 

curves on the surface, then a unit surface normal N̂  is given by 

  ˆ u v

u v





r r

N
r r

 (113) 

with normal vector differential 

 
ˆ ˆ

ˆ ˆ ˆ
u vd du dv du dv

u v
 

   
 
N N

N N N  (114) 

Note that ˆdN  is orthogonal to N̂ .  This can be proved by the following: (i) ˆ ˆ 1N N  and 

the differential    ˆ ˆ 1 0d d N N ; (ii)  ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2d d d d  N N N N N N N N     which leads to 

(iii)  ˆ ˆ ˆ ˆ2 0d d N N N N   giving ˆ ˆ 0d N N  and ˆdN  is orthogonal to N̂ . 

An expression for the denominator of equation (113) can be developed using a formula for 

vector dot and cross products:              a b c d a c b d a d b c      giving 

 

   

     

2

2

2

u v u v u v

u u v v u v

EG F

   

 

 

r r r r r r

r r r r r r



     (115) 

Defining a quantity J, that is a function of the First Fundamental Coefficients, as 

 2
u vJ EG F   r r  (116) 

we may express the unit surface normal N̂  as 

  ˆ u v

J



r r

N  (117) 

The tangent vectors ur  and vr  at P on the surface S, intersect at an angle  , hence 

 sin sinu v u v EG   r r r r  (118) 

and from equations (109) 

 cos cosu v u vF EG   r r r r  (119) 

so that the angle between the tangent vectors to the parametric curves on the surface is 

given by 

 cos and      sin
F J
EG EG

    (120) 
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We can see from this equation that if F is zero, then the parametric curves on the surface 

S intersect at right angles, i.e., the parametric curves form an orthogonal network on the 

surface. 

If we consider an infinitesimally small quadrilateral on the surface S whose sides are 

bounded by the curves  = const.u ,  = const.v ,  = const.u du  and  = const.v dv  then 

the lengths of adjacent sides are uds  and vds .  These infinitesimal lengths are found from 

equation (108) by setting 0dv   and 0du   respectively, giving 

     and    u vds E du ds G dv   (121) 

This infinitesimally small quadrilateral can be considered as a plane parallelogram whose 

area is 

 

sin

sin

u vdA ds ds

EG dudv

J dudv









  (122) 

 

The Second Fundamental Form (SFF) of a surface is given by 

 

   
     

   

2 2

2 2

ˆ ˆ ˆSFF

ˆ ˆ ˆ ˆ

2

u v u v

u u u v v u v v

d d du dv du dv

du dudv dv

L du M dudv N dv

     

    

  

r N r r N N

r N r N r N r N

 

   

 (123) 

where 

  

ˆ

ˆ ˆ2

ˆ

u u

u v v u

v v

L

M

N

 

  

 

r N

r N r N

r N



 



 (124) 

are the Second Fundamental Coefficients (SFC). 

 

Alternative expressions for the Second Fundamental Form and the Second Fundamental 

Coefficients can be obtained by the following. 

Since ˆ 0u r N  and ˆ 0v r N  (from the definition of N̂ ), then 
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(i)    ˆ ˆ 0u u uu


 


r N r N  ; i.e., ˆ ˆ 0u u uu r N r N   and so ˆ ˆ
u u uu r N r N  . 

(ii)    ˆ ˆ 0u u vv


 


r N r N  ; i.e., ˆ ˆ 0u v uv r N r N   and so ˆ ˆ
u v uv r N r N  . 

(iii)    ˆ ˆ 0v v uu


 


r N r N  ; i.e., ˆ ˆ 0v u vu r N r N   and so ˆ ˆ
v u vu r N r N  . 

(iv)    ˆ ˆ 0v v vv


 


r N r N  ; i.e., ˆ ˆ 0v v vv r N r N   and so ˆ ˆ
v v vv r N r N  . 

Hence 

 

ˆ

ˆ

ˆ

u v
uu uu

u v
uv uv

u v
vv vv

L
J

M
J

N
J


 


 


 

r r
N r r

r r
N r r

r r
N r r

 

 

 

 (125) 

and the Second Fundamental Form (SFF) becomes 

 

   

   

2 2

2 2

2

ˆ ˆ ˆSFF 2

ˆ2

ˆ

uu uv vv

uu uv vv

du dudv dv

du dudv dv

d

  

     


r N r N r N

r r r N

r N

  



  (126) 

where 2d r  is the second order surface differential, and 

    2 22 2uu uv vvd du dudv dv  r r r r  (127) 

 

Let P be a point on a surface with coordinates  ,u v  and Q a neighbouring point on the 

surface with coordinates  ,u du v dv  .  Using Taylor's theorem, the position vector 

 ,u vr  can be written as 

 

       

       2 2

, ,

1
2

2!
higher order terms

P P P u P v

P uu P P uv P vv

u v u v u u v v

u u u u v v v v

    

      



r r r r

r r r

 (128) 

where all partial derivatives are evaluated ,P Pu v . 
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Letting Pu u du   and Pv v dv  , then    , ,u v u du v dv  r r , Pu u du   and 

Pv v dv  .  Substituting into equation (128) gives 

 

   

    2 2

, ,

1
2

2
higher order terms

P P P P u v

uu uv vv

u du v dv u v du dv

du dudv dv

    

  



r r r r

r r r

 (129) 

Dropping the subscript P, then using equation (127) and re-arranging gives 

     21
, , higher order terms

2
u du v dv u v d d     r r r r  (130) 

Now    , ,PQ u du v dv u v   r r


 and ˆPQ N


  is the projection of PQ


 onto the unit 

surface normal, so using equation (130) we may write 

 21ˆ ˆ ˆ higher order terms
2

PQ d d  N r N r N


    (131) 

Now, using equation (126) and noting that ˆ 0d r N  (since dr  and N̂  are orthogonal) 

equation (131) becomes 

 
1ˆ SFF higher order terms
2

PQ  N


  (132) 

This shows that the Second Fundamental Form (SFF) is the principal part of twice the 

projection of PQ


 onto N̂  so that SFF  is the principal part of twice the perpendicular 

distance from Q onto the tangent plane to the surface at P.  It should be noted here that 

as 0PQ 


 the higher order terms 0 . 

In Figure 17, C is a curve on a surface S and P is 

a point on the curve.  t̂ , b̂  and n̂  are the 

orthogonal unit vectors of the curve C at P and 

the plane containing t̂  and n̂  is the osculating 

plane.  Also at P, N̂  is the unit normal vector to 

the surface and the plane containing t̂  and N̂  is 

the normal section plane.  In general, the 

osculating plane and the normal section plane, 

both containing the common tangent t̂ , do not 

coincide, but instead make an angle   with each 

other. 

z

yx

r

S

P
·

n

t
b

N

x
·
Q

C

Figure 17:  Curve  on surface 
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At P on the curve C, the normal curvature vector Nk  is the projection of the curvature 

vector k of C onto the surface unit normal N̂ , so that  ˆ ˆ
N k k N N .  The scalar 

component N  of Nk  in the direction of N̂  is given by 

 ˆ
N  k N  (133) 

and N  is called the (scalar) normal curvature. 

Also, at P on the curve C, the osculating plane containing n̂  and the normal section plane 

containing N̂  make an angle   with each other, hence 

 ˆˆ sin  n N  (134) 

Using equation (133) and the first of the Frenet-Serret formulae (85) 

 
ˆ

ˆ ˆ ˆˆ cosN

d
ds

      
t

k N N n N    (135) 

This is Meusnier's theorem3 that relates the normal curvature N  with the curvature   of 

a curve on a surface.  When 0  , ˆˆ n N 0 ; i.e., n̂  and N̂  are (by convention) parallel 

and pointing in the same direction, and N  .   

Since 
1




 , Meunier's theorem can also be stated as: 

Between the radius   of the osculating circle of a plane section at P and the radius 

N  of the osculating circle of a normal section at P, where both sections have a 

common tangent, there exists the relation 

 cosN    (136) 

                                      

3 Meusnier's theorem is a fundamental theorem on the nature of surfaces, named in honour of the French 

mathematician Jean-Baptiste-Marie-Charles Meusnier de la Place (1754 - 1793) who, in a paper titled 

Mémoire sur la corbure des surfaces (Memoir on the curvature of surfaces), read at the Paris Academy of 

Sciences in 1776 and published in 1785, derived his theorem on the curvature, at a point on a surface, of 

plane sections with a common tangent (DSB 1971). 
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The normal curvature ˆ
N  k N  is the ratio of the Second Fundamental Form (SFF) and 

the First Fundamental Form (FFF), or 
SFF
FFFN  .  This can be demonstrated by the 

following.   

The unit tangent vector t̂  and the surface unit normal vector N̂  are orthogonal, so 

ˆˆ 0t N , and  ˆˆ 0
d
dt

t N .  That is 
ˆˆ

ˆ ˆ 0
d d
dt dt

 
t N

N t  , hence 
ˆˆ

ˆ ˆd d
dt dt

 
t N

N t  .   

Now, using equation (135) we may write 

 
ˆ

ˆ ˆ
N

d
ds

  
t

k N N   

So, by the chain rule 

 
 

2

ˆ ˆ ˆˆˆ ˆ
ˆ ˆ ˆ

N

d dt d dt d ds d dt d dt d dtd d dt
ds dt ds ds dt ds dt ds dt ds dt

         
t t N r N r Nt t

N N N
  

    

Now, using equations (106) and (114) gives 

 2

u v u v

N

du dv du dv
dt dt dt dt

ds
dt



             
 

    

r r N N

 

and the numerator and denominator can be simplified using equations (123) and (112) 

respectively and finally the normal curvature N  becomes 

   
   

2 2

2 2

2 2 2 2

2
2 SFFˆ

FFF2
2

N

du du dv dv
L M N

L du Mdudv N dvdt dt dt dt
du du dv dv E du Fdudv G dv

E F G
dt dt dt dt



               
   

               

k N  (137) 

Dividing the FFF and SFF by  2du  and making the substitution 

 
dv
du

   (138) 

gives the normal curvature as 

 
2

2

2
2N

L M N
E F G

 


 
 


 

 (139) 

Note here that   is an unspecified parametric direction on the surface S. 
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Extreme values of N  can be found by solving 0Nd
d



 , that is, using the quotient rule for 

differentiation 
2

du dv
v ud u dx dx

dx v v

    
 gives 

 
     

 

2 2

22

2 2 2 2 2 2
0

2
N

E F G M N L M N F Gd
d E F G

     
  

      
 

 
 

that simplifies to 

      2 22 2 0E F G M N L M N F G              (140) 

Now since  

 

2

2

2  and

2

E F G E F F G

L M N L M M N

    

    

     

     

 

equation (140) can be simplified as 

 

   E F F G L M M N

E F L M
F G M N

E F L M
F G M N

     

 
 

 
 
 

      

 
  

 
 


 

 

and extreme N  satisfies 

 N

E F L M
F G M N

 


 
 

 
   (141) 

or 

 

   

   

0

0

N

N

F G M N

E F L M

  

  

   

     

that can be re-cast as 

 
 

 

0

0

N N

N N

F M G N

E L F M

  

  

   

   
 (142) 
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From equation (141) we may write 

       0M N E F L M F G          

that can be expressed as a quadratic equation in   

    2 0FN GM EN GL EM FL        (143) 

Two values of   are found, unless SFF vanishes or is proportional to FFF.  These values 

of  , or 
dv
du

 are called the directions of principal curvature labelled 1  and 2  and the 

normal curvatures in these directions are called the principal curvatures, and labelled 1  

and 2 .  These principal curvatures are the extreme values of the normal curvature N  

and correspond with the two values of   found from equation (143). 

The solutions for the quadratic equation 2 0ax bx c    are 
21

2

4
2

x b b ac
x a

           
 and 

1x  and 2x  are real and unequal if a, b, c are real, and 2 4 0b ac  .  Also, 1 2x x b a    

and 1 2x x c a .  Using these relationships we have from equation (143) 

 
      

 

2
1

2

4

2

EN GL EN GL FN GM EM FL

FN GM





                
 (144) 

and the sum and product of the parametric directions are 

 1 2

EN GL
FN GM

 


  


 (145) 

 1 2

EM FL
FN GM

 


 


 (146) 

Equations (142) can be expressed in the matrix form Ax 0  as 

 
1 0

0
N N

N N

F M G N

E L F M

 

 

      
                    

 

These homogeneous equations have non-trivial solutions for x if, and only if, the 

determinant of the coefficient matrix A is zero (Sokolnikoff & Redheffer 1966).  This leads 

to a quadratic equation in N  

    2 2 22 0
N N

N N
N N

F M G N
EG F EN GL FM LN M

E L F M

 
 

 

 
       

 
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whose solutions are 1N   and 2N  , the principal curvatures.  Half the sum of the 

solutions and the product of the solutions can be used to define two other curvatures: 

(i) average curvature  
 

1
2 1 2 22

2 2
22

EN GL FM EN GL FM
JEG F

 
   

  


 (147) 

(ii) Gaussian curvature 
2 2

1 2 2 2

LN M LN M
EG F J

 
 

 


 (148) 

We will now show that the principal directions are orthogonal.  Consider two curves 1C  

and 2C  on a surface S with curvilinear coordinates ,u v .  The infinitesimal distance ds 

along 1C  corresponds to infinitesimal changes du and dv along the parametric curves u = 

constant and v = constant.  Similarly, an infinitesimal distance s  along 2C  corresponds 

to infinitesimal changes  and u v  .  Furthermore, the two curves are in the directions of 

the principal curvatures 1k  and 2 , and these principal directions are defined as 1

dv
du

   

and 2

v
u





 . 

Using equation (106) we may write the unit tangents to these two curves as 

    and   
d du dv u v
ds u ds v ds s u s v s

  
  

   
   

   
r r r r r r

 

Now, if the vector dot-product of the unit vectors ,
d
ds s




r r
 is zero then the two vectors are 

orthogonal.  Using equations (109) the dot-product is 

 

d du dv u v
ds s u ds v ds u s v s

du u du v dv u dv v
u ds u s u ds v s v ds u s v ds v s

du u du v dv u
u u ds s u v ds s ds

  
  

   
   
  
 

                    
       

   
       
                    

r r r r r r

r r r r r r r r

r r r r

 

   

 

     u u u v v v

dv v
s v v ds s

du u du v dv u dv v
ds s ds s ds s ds s

du u du v dv u dv v
E F G

ds s ds s ds s ds s

du v dv u ds s dv v d
E F G

ds s ds s du u ds s


 

   
   

   
   

   
   

               
      

      

      

r r

r r r r r r



  

s s du u
du u ds s

v dv dv v du u
E F G

u du du u ds s

 
 

  
  

       
             
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Using equations (145) and (146) we have 

 

  

 

1 2 1 2

0

d du u
E F G

ds s ds s
GL EN EM FL du u

E F G
FN GM FN GM ds s

EFN EGM FGL EFN EGM FGL du u
FN GM ds s

 
   

 






   

                       
    






r r


 

Hence the unit vectors of the curves 1C  and 2C  are orthogonal as are the directions of 

principal curvatures 1  and 2 . 

If, at a point on a surface, the normal curvature N  is the same in every direction, then 

such points are known as umbilical points.  In the directions of the parametric curves u = 

constant (du = 0) and v = constant (dv = 0), the normal curvatures are found from 

equation (137) as 

 0 0    and    du dv

N L
G E

     

and in the direction of a curve where du dv , equation (137) gives 

 
2
2du dv

L M N
E F G

 

 


 
 

Now, if the normal curvature is the same in every direction then we have two equations 

 
2
2

L N
E G
L L M N
E E F G



 


 

 (149) 

From the second of equations (149) we have 2 2EL FL GL EL EM EN      that 

simplifies to (a): 2 2FL EM EN GL   .  From the first of equations (149) 

0EN GL  , so substitution into (a) above gives 0FL EM   or 
L M
E F

 .  Hence for 

an umbilical point, where the normal curvature is the same in every direction, the 

condition that holds 

 =
N M L
G F E

  (150) 



RMIT University Geospatial Science 

 

 

 

Geometric Geodesy A (January 2013) 44 

1.2.4 Surfaces of Revolution 

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse about its 

minor axis and is sometimes called an oblate ellipsoid.  [A prolate ellipsoid is a surface of 

revolution created by rotating an ellipse about its major axis.]  Some other surfaces of 

revolution are: a sphere (a circle rotated about a diameter), a cone (excluding the base), 

and a cylinder (excluding the ends). 

The x,y,z Cartesian coordinates of a general surface of revolution having u,v curvilinear 

coordinates can be expressed in the general form 

 

   

   

   

, cos

, sin

,

x u v g u v

y u v g u v

z u v h u







 (151) 

where    ,g u h u  are certain functions of u.  A point on the surface of revolution has the 

position vector 

  , cos sinu v g v g v h   r r i j k  (152) 

The derivatives of the position vector are 

 

 

 

, cos sin

, sin cos 0

sin cos 0

sin cos 0

cos sin

cos sin 0

u

v

uv u

vu v

uu u

vv v

u v g v g v h
u

u v g v g v
v

g v g v
v

g v g v
u

g v g v h
u

g v g v
v

      



    

      

      

      



    


r r i j k

r r i j k

r r i j k

r r i j k

r r i j k

r r i j k

 (153) 

where        ;    and  ;   
d d d d

g g u g g u h h u h h u
du du du du

          

Using equations (109) and (153) gives the First Fundamental Coefficients as 
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2 2

2

0

u u

u v

v v

E g h

F

G g

   

 

 

r r

r r

r r







 (154) 

In equations (154), 0F   which indicates that the parametric curves on a surface of 

revolution (the u-curves and v-curves) are orthogonal. 

Equation (116) gives 

 2 2 2
u vJ EG F g g h      r r  (155) 

noting that the normal vector N is 

 

     

cos sin cos sin

sin cos 0
u v g v g v h gh v gh v gg

g v g v

 

           



i j k

N r r i j k  (156) 

and the unit normal vector N̂  is 

 ˆ cos sin
u v

gh gh gg
v v

J J J J

  
      


N N N

N i j k
N r r

 (157) 

Using equations (125) with (153) and (157) gives the Second Fundamental Coefficients as 

 

 
2 2

2

2 2

ˆ

ˆ 0

ˆ

u v
uu uu

u v
uv uv

u v
vv vv

g g h g h
L g h g h

J J g h

M
J

g h gh
N

J J g h

           
 


  

 
   

 

r r
N r r

r r
N r r

r r
N r r

 

 

 

 (158) 

So, for a general surface of revolution, we have 

 0   and   0F M   (159) 

Substituting these results into equation (137) gives the equation for normal curvature on a 

general surface of revolution as 

 
   
   

2 2

2 2N

L du N dv

E du G dv






 (160) 

The normal curvatures along the parametric curves u = constant (du = 0) and v = 

constant (dv = 0) are denoted 1  and 2  respectively and 
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 

 

1
2

3
2

1 2 2

2 2 2

N h
G g g h

L g h g h
E g h






 

 

   
 

 

 (161) 

Figure 18 shows two points P and Q on a surface S separated by a very small arc ds .  The 

parametric curves u, u du  and v, v dv  form a very small rectangle on the surface and 

ds  can be considered as the hypotenuse of a plane right-angled triangle and we may write 

 tan
G dv

E du
   (162) 

where   is azimuth; a positive clockwise angle measured from the v-curve  constantv  . 

a

P

Q

u

u du

v dv

v

ru

rv

ds

ds E  = Ö
¾

duv

ds G  = Ö
¾

dvu

Figure 18:  Small rectangle on surface S  
 

Dividing the numerator and denominator of equation (160) by dv  we may write the 

equation for normal curvature on a surface of revolution as 

 

2

2N

du
L N

dv
du

E G
dv



    


    

 (163) 

and using equation (162) we have 
2

2tan
du G
dv E 
    

 and equation (163) can be written as 

 

2
2

2

2

tan
tan

1 tan
tan

N

LG L N
N

E E G
EG

G
E







                       
 

     
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Now since 2 2
2

1
1 tan sec

cos
 


    and 

2
2

2

sin
tan

cos





 , we can write the normal 

curvature on a surface of revolution as 

 2 2 2 2
2 1cos sin cos sinN

L N
E G

      
               

 (164) 

Inspection of equation (164) reveals the following: 

(i) the function N  must have optimum values, unless 1 2  .  These optimum values 

are found by setting the derivative Nd
d



 to zero.  From equation (164) 

    1 2 1 22 sin cos sin2 0Nd
d


      


      

 and if 1 2 0    then the optimum values are where sin2 0  , i.e., 2 n   or 
1
2 n   where 0,1,2, 3,n    0 ,90 ,180 ,270 ,     

 .  This means that the 

optimum curvatures (of normal sections) are in the directions of the parametric 

curves on the surface of revolution. 

(ii) there may be a point (or points) on the surface of revolution where 1 2   in which 

case the curvature would be constant for any normal section in any direction.  Such 

points are known as umbilic points.  (For an ellipsoid representing the mathematical 

shape of the earth, the minor axis of the ellipsoid is the earth's polar axis and the 

north and south poles of the ellipsoid are umbilic points.) 

With   denoting the curvature of a normal section having the direction   on the surface, 

equation (164) becomes 

 2 2
2 1cos sin       (165) 

And, since curvature    is the reciprocal of radius of curvature    then 

 2 2

2 1

1 1 1
cos sin



 
  

   

and 

 1 2
2 2

1 2cos sin
 


   




 (166) 
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This is Euler's equation4 (on the curvature of surfaces) and gives the radius of curvature of 

a normal section in terms of the radii of curvature 1 2,   along the parametric curves u = 

constant, v = constant respectively and the azimuth   measured from the curve v = 

constant.  Note here that Euler's equation is applicable only on surfaces of revolution 

where the parametric curves are orthogonal and in the directions of principal curvature. 

 

1.3 THE ELLIPSOID 
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Figure 19:  The reference ellipsoid 

In geodesy, the ellipsoid is a surface of revolution created by rotating an ellipse (whose 

major and minor semi-axes lengths are a and b respectively and a b ) about its minor 

axis.  The ,   curvilinear coordinate system is a set of orthogonal parametric curves on 

the surface – parallels of latitude   and meridians of longitude   with their respective 

                                      

4 This equation on the curvature of surfaces is named in honour of the great Swiss mathematician Leonard 

Euler (1707-1783) who, in a paper of 1760 titled Recherches sur la courbure de surfaces (Research on the 

curvature of surfaces), published the result 
 

2

cos 2

fg
r

f g f g 


  
 where f and g are extreme values of 

the radius of curvature r (Struik 1933).  Using the trigonometric functions 2 2cos 2 cos sin     and  
2 2cos sin 1    his equation can be expressed in the form given above. 
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reference planes; the equator and the Greenwich meridian.  Longitudes are measured 0  to 

180   (east positive, west negative) from the Greenwich meridian and latitudes are 

measured 0  to 90   (north positive, south negative) from the equator.  The x,y,z 

Cartesian coordinate system has an origin at O, the centre of the ellipsoid, and the z-axis 

is the minor axis (axis of revolution).  The xOz plane is the Greenwich meridian plane (the 

origin of longitudes) and the xOy plane is the equatorial plane.   

The positive x-axis passes through the intersection of the Greenwich meridian and the 

equator, the positive y-axis is advanced 90  east along the equator and the positive z-axis 

passes through the north pole of the ellipsoid.  The Cartesian equation of the ellipsoid is 

 
2 2 2

2 2
1

x y z
a b


   (167) 

where a and b are the semi-axes of the ellipsoid  a b . 

All meridians of longitude on the ellipsoid are ellipses having semi-axes a and b  a b  

since all meridian planes – e.g., Greenwich meridian plane xOz and the meridian plane pOz 

containing P – contain the z-axis of the ellipsoid and their curves of intersection are 

ellipses (planes intersecting surfaces create curves of intersection on the surface).  This can 

be seen if we let 2 2 2p x y   in equation (167) which gives the familiar equation of the 

(meridian) ellipse 

  
2 2

2 2
1      

p z
a b

a b
    (168) 
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Figure 20:  Meridian ellipse  
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In Figure 20,   is the latitude of P (the angle between the equator and the normal), C is 

the centre of curvature and PC is the radius of curvature of the meridian ellipse at P.  H is 

the intersection of the normal at P and the z-axis (axis of revolution). 

All parallels of latitude on the ellipsoid are circles created by intersecting the ellipsoid with 

planes parallel to (or coincident with) the xOy equatorial plane.  Replacing z with a 

constant C in equation (167) gives the equation for circular parallels of latitude 

  
2

2 2 2 2
2

1        0 ;
C

x y a p C b a b
b

         
 (169) 

All other curves on the surface of the ellipsoid created by intersecting the ellipsoid with a 

plane are ellipses.  This can be demonstrated by using another set of coordinates , ,x y z    

that are obtained by a rotation of the x,y,z coordinates such that 

 
11 12 13

21 22 23

31 32 33

       where   

x x r r r

y y r r r

z r r rz

                                     

R R  

where R is an orthogonal rotation matrix and 1 T R R  so 

 
11 21 31

1
12 22 32

13 23 33

       and   

x xx x r r r

y y y r r r y

z z r r rz z



                                                               

R  

giving 

2 2 2 2 2 2 2
11 21 31 11 21 11 31 21 31

2 2 2 2 2 2 2
12 22 32 12 22 12 32 22 32

2 2 2 2 2 2 2
13 23 33 13 23 13 33 23 33

2 2 2
11 12

2 2 2

2 2 2

2 2 2

x r x r y r z r r x y r r x z r r y z

y r x r y r z r r x y r r x z r r y z

z r x r y r z r r x y r r x z r r y z

x y r r

             

             

             

         

   

2 2 2 2 2 2 2 2
21 22 31 32 11 21 12 22

11 31 12 32 21 31 22 32

2

2 2

x r r y r r z r r r r x y

r r r r x z r r r r y z

         

      

 

Substituting into equation (167) gives the equation of the ellipsoid in , ,x y z    coordinates 

 

       

   

 

2 2 2 2 2 2 2 2 2
11 12 21 22 31 32 11 21 12 22

2
11 31 12 32 21 31 22 32

2 2 2 2 2 2
13 23 33 13 23 13 33 23 332

21

2 2

1
2 2 2 1

r r x r r y r r z r r r r x y

a r r r r x z r r r r y z

r x r y r z r r x y r r x z r r y z
b

                         

                (170) 
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In equation (170) let 1z C   where 1C  is a constant.  The result will be the equation of a 

curve created by intersecting an inclined plane with the ellipsoid, i.e., 

 

 
     
 

2 2 2 2 2 2
2 211 12 13 11 21 12 22 13 23 21 22 23

2 2 2 2 2 2

1 11 31 12 32 13 33 1 21 31 22 32 23 33

2 2 2 2
1 31 32 33

2

2 2

1

r r r r r r r r r r r r
x x y y

a b a b a b

C r r r r r r x C r r r r r r y

C r r r

                              
      

     (171) 

This equation can be expressed as 

 2 22 1Ax Hx y By Dx Ey           (172) 

where it can be shown that 2 0AB H  , hence it is the general Cartesian equation of an 

ellipse that is offset from the coordinate origin and rotated with respect to the coordinate 

axes (Grossman 1981).  Equations of a similar form can be obtained for inclined planes 

2x C   and 3y C  , hence we may say, in general, inclined planes intersecting the 

ellipsoid will create curves of intersection that are ellipses. 

Since the ellipsoid is a surface created by rotating an ellipse about its minor axis, then an 

ellipsoid can be completely defined by specifying one of the following pairs of parameters of 

the generating ellipse: 

 (i)  ,a b  semi-major and semi-minor axes, or 

 (ii)  2,a e  semi-major axis and eccentricity-squared, or 

 (iii)  ,a f  semi-major axis and flattening. 

a, b, 2e  and f are ellipsoid parameters (or constants) and they have been defined (for the 

ellipse) in earlier sections.  Other parameters; c, 2e  and n are also useful in developments 

to follow.  They have also been defined in earlier sections as well as the interrelationship 

between all these parameters [see equations (22) to (37)].  In addition; the latitude 

functions W and V are useful in the computation of radius of curvature and Cartesian 

coordinates [see equations (43) to (47)] and the relationships between the normal at P and 

the axes of the ellipse are the same as for P on an ellipsoid [see Figure 9 and equations 

(48) to (51) ].  Also latitudes ,  and     of P on an ellipse are identical to P on an 

ellipsoid and their interrelationship is often used to simplify formula [see Figure 9 and 

equations (54) to (56)] 
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1.3.1 Differential Geometry of the Ellipsoid 

The x,y,z Cartesian coordinates are, using equations (43), (44) and the general notation of 

equations (151) 

 

   

   

 
 

 
2

, cos cos cos cos cos

, cos sin cos sin sin

1
, sin sin

a c
x g

W V
a c

y g
W V
a e b

z h
W V

       

       

    

  

  


  

 (173) 

where 

    cos     and    sin
c b

g g h h
V V

        (174) 

and, from equations (45) and equations (22) to (34) 

 
 

 
 

2
2 2 2 2 2 2

2 2 2 2
2 2

22 2

1 sin ;  1 cos   and   with

2
; 2 ;

1

a
W e V e c

b
f fa b a b a b

f e f f e
a a b f

     

       


 (175) 

Noting that  V V   and 
2

cos sin
dV e
d V

 



  , the derivatives g  , h  , g  , h   are 

 

 

3

3

2

3 3 2

3 3 2

cos sin

sin cos

1
sin cos 2 3

3
cos sin 2

d c c
g

d V V

d b c
h

d V V

d c c e
g

d V V V

d c c
h

d V V V

 


 


 


 


      

     

                    
      

 (176) 

and related functions are 

 
2 2

2 2
3 3

      and      
c c

g h g h g h
V V
                   

 (177) 
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First Fundamental Coefficients E, F and G are found from equations (154), (174) and 

(176) as 

 

2
2 2

3

2
2

0

cos

c
E g h

V
F

c
G g

V


        


     

 (178) 

and the related quantity J is found from equation (116) 

 
2

2
2

cos
c

J EG F
V

      
 (179) 

In equations (178), 0F   which indicates (as we should expect) that the -curves  

(parallels of latitude) and -curves  (meridians of longitude) are orthogonal. 

Second Fundamental Coefficients L, M and N are found using equations (158), (174), (176) 

and (177) as 

 

32 2

2

2 2

0

cos

g h g h c
L

Vg h

M

gh c
N

Vg h


   
 

 



 

 

 (180) 

Identical results for E,F,G and L,M,N can be obtained, with slightly less algebra, in the 

following manner. 

The position vector of P on the surface of the ellipsoid is 

 

 , cos sin

cos cos cos sin sin

g g h

c c b
V V V

   

    

   

  

r r i j k

i j k  

and using equations (153), (174) and (176) the derivatives of the position vector are 

 
3 3 3

cos sin

sin cos sin sin cos

sin cos 0

cos sin cos cos 0

g g h

c c c
V V V
g g

c c
V V





 

    

 

   

    

  

   

   

r i j k

i j k

r i j k

i j k
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The unit normal vector N̂  is found from equation (117) as  

  ˆ
J

 


r r
N  

and by equation (156) the cross product  r r  is 

 
2 2 2

2 2
2 2 2

cos sin

cos cos cos sin cos sin

gh v gh v gg

c c c
V V V

 

     

      

                       

r r i j k

i j k  

giving the unit normal vector to the surface of the ellipsoid as 

 ˆ cos cos cos sin sin       N i j k  

The derivatives of the unit normal vector are 

 

ˆ
ˆ sin cos sin sin cos

ˆ
ˆ cos sin cos cos 0





    


   



   




   



N
N i j k

N
N i j k

 

Now using equations (109) the vectors above, the First Fundamental Coefficients E, F and 

G are 

 

2 2 2
2 2 2 2 2

3 3 3

2

3

2 2

4 4

2 2
2 2 2 2

sin cos sin sin cos

sin sin cos cos sin sin cos cos

0

cos sin cos cos

cos

E

c c c
V V V

c
V

F

c c
V V

G

c c
V V

c
V

 

 

 

    

       

   





                      

    


 





            




r r

r r

r r







2   
 

and using equations (124) the Second Fundamental Coefficients L, M and N are 
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 

2 2 2 2 2
3 3 3

3

3 3

2 2 2 2

2

ˆ

sin cos sin sin cos

ˆ ˆ2

sin cos sin cos sin cos sin cos

sin cos sin cos sin cos sin cos

0

ˆ

cos sin cos cos

cos

L

c c c
V V V
c

V

M

c c
V V

c c
V V

N

c c
V V
c
V

 

   

 

    

       

       

   

 

  



  

   
  



 

 



r N

r N r N

r N



 



  

These results are identical to those in equations (178) and (180) 

The element of arc length ds on the surface of the ellipsoid is found from equations (108) 

and (178) as 

 

     

   

22 2

2 2
2 2

3

2

cos

ds E d F d d G d

c c
d d

V V

   

  

  

            
 (181) 

The element of arc length ds  along the -curve  (a meridian of longitude where 

 constant   and 0d  ) and the element of arc length ds  along the -curve  (a 

parallel of latitude where  constant   and 0d  ) are given by equations (121) as 

 
3

cos

c
ds E d d

V
c

ds G d d
V





 

  

 

 
 (182) 

The angle   between the tangents to the meridian of longitude and parallel of latitude 

curves are given implicitly by equations (120) as 

 cos 0    and    sin 1
F J
EG EG

      (183) 
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and as we should expect, 90   , since the meridians and parallels ( -curves  and 

-curves ) form an orthogonal net (since, from above, 0F  ). 

The area of an infinitesimally small rectangle on the surface of the ellipsoid bounded by 

meridians   and d  , and parallels   and d   is given by equation (122) as 

 
2

2
cos

c
dA J d d d d

V
         

 (184) 

The normal curvature on the ellipsoid is obtained from equation (160) as 

 
   
   

   

       

2 22
2 2

3

2 2 22
2 2

3

cos

cos
N

c c
d dL d N d V V

c cE d G d d d
V V

   


    


 

 
 (185) 

The optimum normal curvatures are 1

N
G

   and 2

L
E

  , and these are in the directions 

of the parametric curves   = constant  0d   and   = constant  0d   respectively. 

From equations (161), (178) and (180) we have 

 

       
2

3

1 22 2
2

33

cos 1 1
      and      

cos

c c
N LV V

c cc cG E
V VV V


 


       (186) 

and since radius of curvature   is the reciprocal of the curvature  , the optimum radii of 

curvature of the principal normal sections of the ellipsoid are 

 1 2 3
      and      

c c
V V

    (187) 

These optimum radii are the principal radii of curvature and are in the directions of the 

parametric curves; parallels of latitude (  = constant) and meridians of longitude (  = 

constant) respectively.  These directions are the principal directions of the ellipsoid. 

In general, at a point on an ellipsoid where 90    and 0 cos 1   the quantity 1V   

and 3V V ; and since c = constant for any particular ellipsoid then 
3

c c
V V

 .  Hence the 

principal radii of curvature at a point are: 

 1

c
V

  , that is the largest radius of curvature of a normal section and this normal 

section is in the direction of the parallel of latitude.  In geodesy, this is known as the 

prime vertical normal section. 
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 2 3

c
V

  , that is the smallest radius of curvature of a normal section and this normal 

section is in the direction of the meridian of longitude.  In geodesy, this is known as 

the meridian normal section. 

These principal radii of curvature are designated   and   respectively and so with 

equations (47) 

 

 

 
 

2

3 3

radius of curvature of prime vertical normal section

1
radius of curvature of meridian normal section

c a
V W

a ec
V W





 


 

 (188) 
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Figure 21:  Meridian and prime vertical normal sections 

In Figure 21 r  and r  are orthogonal unit vectors in the directions of the parametric 

curves (meridians and parallels) and N̂  is the unit normal to the surface.  The meridian 

normal section plane MPNO and the prime vertical normal section plane WPEH are 

orthogonal and contain the unit vectors r  and r  respectively.  Both normal section 

planes contain N̂  which lies along the normal to the surface that intersects the equatorial 

plane at D and the polar axis at H.  C lies on the normal and is the centre of curvature of 

the meridian ellipse; PC   is the radius of curvature of the meridian section.  H is the 

centre of curvature of the prime vertical ellipse and PH   is the radius of curvature of 

the prime vertical section.  The distance 2 sinOH e  .  These ellipse relationships have 

been established previously, see equations (48), (51) and (66). 
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For umbilical points the following condition is obtained from equation (150) 

 
   

2 2
2

2

cos
0

=     or    =
0cos

c c
G F E V V

c cN M L
V V




   

which implies that 3V V  or 2 1V  .  Now; 2 2 21 cosV e    is unity only at the north 

and south poles of the ellipsoid where 90    .  Hence both the north and south poles of 

the ellipsoid are umbilical points.   

At the poles  90     

 
2

pole pole

a
c

b
     (189) 

and c is the polar radius of curvature  

At the equator  0    

 
   

3 1
2 2

2

3 2 2
      and      

1 1
equator equator

c c b c c
a

V a Ve e
      

  
 (190) 

The radius of curvature of a normal section having azimuth   is   and from Euler's 

equation [equation (166)]  

 
2 2sin cos




   



 (191) 

The mean radius of curvature m  is the mean value of the radii of curvature for all values 

of 0 2    in equation (191) where in general the mean value of a function  f x  

between x a  and x b  is 

  
1

b

mean

a

f f x dx
b a


   

hence 

 
22

2 2
0 0

1 2
      since 2 4

2 sin cos 2m d d




 

    
     

         

dividing the numerator and denominator of the integrand by 2cos   and taking   out 

as a constant gives 



RMIT University Geospatial Science 

 

 

 

Geometric Geodesy A (January 2013) 59 

 
2

2

2
0

sec2

1 tan
m d




   





  

With the substitution tanu





  then 2secdu d


 


  and 2 2tanu





 , and with 

the limits 20,    corresponding with 0,u    then 

 
2

0

2 1
1m du

u









  

Using the standard integral result 
2

arctan
1

dx
x

x


  

  0
2 2

arctan 0
2m u

  


 
       

 

giving the mean radius of curvature as 

 m   (192) 

 

The Average and Gaussian curvatures are, using equations (147), (148), (186) and (188) 

 
 1 1

2 21 2

1 2

1 1
Average curvature

1
Gaussian curvature

 
 

 


        

 
 (193) 

The radius of a parallel of latitude, a circle on the surface of the ellipsoid, is found from 

Meusnier's theorem [equation (136)] as 

 cosparallelr    (194) 

Figure 22 illustrates the use of Meusnier's theorem to determine the radius of the parallel 

of latitude.  At P on the ellipsoid, the parallel of latitude (radius r) and the prime vertical 

normal section (radius of curvature  ) have a common tangent vector r , and the plane 

containing the parallel of latitude and the prime vertical normal section plane make an 

angle of   with each other.  In Figure 22, N̂  is the unit normal to the surface and the 

distance PH   is the radius of curvature of the prime vertical section at P. 
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r  is the unit tangent in the direction of the meridian normal section and r  and r  are 

orthogonal unit vectors. 
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Figure 22:  The prime vertical section and parallel of latitude 

 

1.3.2 Meridian distance 

Let m be the length of an arc of the meridian from the equator to a point in latitude   

then 

 dm d   (195) 

where   is the radius of curvature in the meridian plane and given by 

 
 

 
 

3
2

2 2

32 2

1 1

1 sin

a e a e

We




 
 


 (196) 

Alternatively, the radius of curvature in the meridian plane is also given by 

 
 

3
2

2

32 21 cos

a c
Vb e




 


 (197) 

Substituting equation (196) into equation (195) leads to series formula for the meridian 

distance m as a function of latitude   and powers of 2e .  Substituting equation (197) into 

equation (195) leads to series formula for m as a function of   and powers of an ellipsoid 

constant 
a b

n
a b





.   
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Series formula involving powers of 2e  are more commonly found in the geodetic literature 

but, series formula involving powers of n are more compact; and they are easier to 

"reverse", i.e., given m as a function of latitude   and powers of n develop a series formula 

(by reversion of a series) that gives   as a function m.  This is very useful in the 

conversion of Universal Transverse Mercator (UTM) projection coordinates E,N to 

geodetic coordinates ,  . 

 

Meridian distance as a series formula in powers of 2e  

Using equations (195), (196) and (45) the meridian distance is given by the integral 

 
       

3
2

2
2 2 2 2

3 3

0 0 0

1 1
1 1 1 sin

a e
m d a e d a e e d

W W

  

  


         (198) 

This is an elliptic integral of the second kind that cannot be evaluated directly; instead, 

the integrand  
3
22 2

3

1
1 sine

W



   is expanded in a series and then evaluated by term-

by-term integration. 

The integrand  
3
22 2

3

1
1 sine

W



  can be expanded by use of the binomial series 

  
0

1 n
n

n

x B x 




   (199) 

An infinite series where n is a positive integer,   is any real number and the binomial 

coefficients nB  are given by 

 
     1 2 3 1

!n

n
B

n
         




 (200) 

The binomial series (199) is convergent when 1 1x   .  In equation (200) n! denotes n-

factorial and    ! 1 2 3 3 2 1n n n n n      .  zero-factorial is defined as 0 ! 1  and 

the binomial coefficient 0 1B  . 

In the case where   is a positive integer, say k, the binomial series (199) can be expressed 

as the finite sum 

  
0

1
k

k k n
n

n

x B x


    (201) 

where the binomial coefficients k
nB  in series (201) are given by 
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 

!
! !

k
n

k
B

n k n



 (202) 

The binomial series is an important tool in geodesy where, as we shall see, it is used in the 

development of various solutions to geodetic problems.  The invention of the binomial series is 

attributed to Isaac Newton, who, in a letter to the German mathematician Gottfried Leibniz in 

June 1676, set out his theorem as: 

“The Extraction of Roots are much shortened by the Theorem 

  
2 3

&c
2 3 4

m nm n m m n m n m n
P PQ P AQ BQ CQ DQ

n n n n

  
        (a) 

where P PQ  stands for a Quantity whose Root or Power or whose Root of a Power is to be 

found, P being the first Term of that quantity, Q being the remaining terms divided by the first 

term, and m n  the numerical Index of the power of P PQ .  This may be a Whole Number or 

(so to speak) a Broken Number; a positive number or a negative one.”  [Newton then uses 

several cases to describe how P, Q, m and n are obtained and then defines A, B, C and D]  “In 

this last case, if   2 33 2a b x
  to be taken to mean   2 3P PQ   in the Formula, then 3P a , 

2 3
Q b x a , 2m   , 3n  .  Finally, in place of the terms that occur in the course of the 

work in the Quotient, I shall use A, B, C, D, &c.  Thus A stands for the first term 
m n

P ; B for 

the second term 
m

AQ
n

; and so on.  The use of this Formula will become clear through 

Examples.”  [The examples show the application of the formula in cases in which the exponents 

are 1 1 1 4 3, , , , 5, 1,2 5 3 3 5   ]   

In a subsequent letter to Leibniz in October 1676, Newton explains in some detail how he made 

his early discoveries, and discloses that his binomial rule was formulated twelve years earlier, in 

1664, while he was an undergraduate at Cambridge University (Newman 1956). 

Letting , and  
x m

P a Q
a n

    in Newton's formula (a) above gives 

  
    1 2 32 3

2 ! 3 !

1 1 2
a x a x a x a xa       

        
  

 (b) 

Letting 1a   in equation (b) will give the expanded form of equation (199). 

Letting 1a   and setting k   a positive integer in equation (b) will give the expanded form 

of equation (201) 
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The series (199) for 3
2    is 

  
3 3 3 3 3 3
2 2 2 2 2 20 1 2 3

0 1 2 3
0

1 n
n

n

x B x B x B x B x B x


     



        (203) 

The binomial coefficients 
3
2

nB  for the series (199) are given by equation (200) as  

 0n   
3
2

0 1B   

 1n   
 3

2

3
2

1

3
1! 2

B 
    

 2n   
  3

2

3 5
2 2

2

3 5
2! 2 4

B   
 


 

 3n   
   3

2

73 5
2 2 2

3

3 5 7
3! 2 4 6

B     
  

 
 

Inspecting the results above, we can see that the binomial coefficients 
3
2

nB  form a sequence 

 
3 3 5 3 5 7 3 5 7 9 3 5 7 9 11

1, , , , , ,
2 2 4 2 4 6 2 4 6 8 2 4 6 8 10

         
  

         
 

Using these coefficients gives (Baeschlin 1948, p.48; Jordan/Eggert/Kneissl 1958, p.75; 

Rapp 1982, p.26) 

 

 
3
22 2 2 2 4 4 6 6

3

8 8 10 10

1 3 3 5 3 5 7
1 sin 1 sin sin sin

2 2 4 2 4 6
3 5 7 9 3 5 7 9 11

sin sin
2 4 6 8 2 4 6 8 10

e e e e
W

e e

   

 

   
     

  
      

  
      

 (204) 

To simplify this expression, and make the eventual integration easier, the powers of sin   

can be expressed in terms of multiple angles using the standard form 

 

 
   

   

2
2 2 1

2 221 1
sin cos2 cos 2 2 cos 2 4

1 22 2

2 2
cos 2 6 1 cos2

3 1

n
n

n n

n

n nn
n n n

n

n n
n

n

   

 



                                    
                        

  (205) 

Using equation (205) and the binomial coefficients 2
2

n
n

n
B

n

      
 computed using equation 

(202) gives 

 2 1 1
sin cos 2

2 2
    
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 4 3 1 1
sin cos 4 cos 2

8 8 2
      

 6 5 1 3 15
sin cos 6 cos 4 cos 2

16 32 16 32
        

 8 35 1 1 7 7
sin cos 8 cos 6 cos 4 cos 2

128 128 16 32 16
          

 10 63 1 5 45 15 105
sin cos10 cos 8 cos 6 cos 4 cos 2

256 512 256 512 64 256
            (206) 

Substituting equations (206) into equation (204) and arranging according to cos 2 , 

cos 4 , etc., we obtain (Baeschlin 1948, p.48; Jordan/Eggert/Kneissl 1958, p.75; Rapp 

1982, p.27) 

  
3
22 2

3

1
1 sin cos 2 cos 4 cos 6 cos 8 cos10e A B C D E F

W
     


        (207) 

where the coefficients A, B, C, etc., are 

 

 

2 4 6 8 10

2 4 6 8 10

4 6 8 10

6 8 10

8

3 45 175 11025 43659
1

4 64 256 16384 65536
3 15 525 2205 72765
4 16 512 2048 65536

15 105 2205 10395
64 256 4096 16384

35 315 31185
512 2048 131072

315 3465
16384 6

A e e e e e

B e e e e e

C e e e e

D e e e

E e

      

     

    

   

 









10

10

5536
693

131072

e

F e



 





(208) 

Substituting equation (207) into equation (198) gives the meridian distance as 

    2

0

1 cos 2 cos 4 cos 6 cos 8 cos10m a e A B C D E F d


               

Integrating term-by-term using the standard integral result 
0

sin
cos

x
ax

ax dx
a

  gives the 

meridian distance m from the equator to a point in latitude   as 
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   21 sin 2 sin 4 sin 6 sin 8 sin10
2 4 6 8 10
B C D E F

m a e A              (209) 

 

where   is in radians and the coefficients A, B, C, etc., are given by equations (208). 

From equation (209), the quadrant distance Q5, the meridian distance from the equator to 

the pole, is  

    2 1
21Q a e A    (210) 

Equation (209) may be simplified by multiplying the coefficients by  21 e  and 

expressing the meridian distance as 

 

  0 2 4 6 8 10sin 2 sin 4 sin 6 sin 8 sin10m a A A A A A A             (211) 

 

where  2
0 1A e A  ,  2

2 1
2
B

A e  ,  2
4 1

4
C

A e  , etc., and 

 

2 4 6 8 10
0

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

1 3 5 175 441
1

4 64 256 16384 65536
3 1 15 35 735
8 4 128 512 16384
15 3 35 105
256 4 64 256
35 5 315

3072 4 256
315 7

131072 4

A e e e e e

A e e e e e

A e e e e

A e e e

A e e

      

         
        
       

  











 10
10

693
131072

A e

    

 

 (212) 

                                      

5 The quadrant distance is the length of the meridian arc from the equator to the pole and the 

ten-millionth part of this distance was originally intended to have defined the metre when that 

unit was introduced.  For those interested in the history of geodesy, The Measure Of All 

Things (Adler 2002) has a detailed account of the measurement of the French Arc (an arc of 

the meridian from Dunkerque, France to Barcelona, Spain and passing through Paris) by John-

Baptiste-Joseph Delambre and Pierre-François-André Méchain in 1792-9 during the French 

Revolution.  The analysis of their measurements enabled the computation of the dimensions of 

the earth that lead to the definitive metre platinum bar of 1799. 
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The GDA Technical Manual formula for meridian distance 

In the Geocentric Datum of Australia Technical Manual (ICSM 2002) the formula for 

meridian distance is given in the form 
 

  0 2 4 6sin 2 sin 4 sin 6m a B B B B        (213) 

 

where 

 

2 4 6
0

2 4 6
2

4 6
4

6
6

1 3 5
1

4 64 256
3 1 15
8 4 128
15 3
256 4
35

3072

B e e e

B e e e

B e e

B e

   

      
     



 (214) 

This is a contraction of equation (211) and the coefficients 0 2 4 6, ,  and B B B B  exclude all 

terms involving powers of the eccentricity greater than 6e  in the coefficients 

0 2 4 6, ,  and A A A A .  Equations (213) and (214) are the same formula given in Lauf (1983, 

p. 36, eq'n 3.55). 

 

Meridian distance as a series expansion in powers of n 

The German geodesist F.R. Helmert (1880) gave a series formula for meridian distance m 

as a function of latitude   and powers of an ellipsoid constant n that requires fewer terms 

than the meridian distance formula involving powers of 2e . 

Using equations (195) and (197) the differentially small meridian distance dm is given by 

 
3

c
dm d

V
  (215) 

With the ellipsoid constant n defined as 

 
2

a b f
n

a b f


 
 

 (216) 

the following relationships can be derived 
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   

2
2 2

2 2

1 4 4
, ,

1 1 1
a n n n

c a e e
b n n n

         
 (217) 

Using the last of equations (217) we may write 

 
 

 

2 2
2 2 2

2

1 4 cos
1 cos

1
n n

V e
n




   


 

and using the trigonometric relationship 2cos 2 2 cos 1    

 

 
 

 
 

2
2

2

2
2

1 2 cos 2 2
1

1
1 2 cos 2

1

n n n
V

n

n n
n





  




  


 (218) 

Now we can make use of Euler’s identities:  cos sin , cos sini ie i e i         in 

simplifying equation (218)  Note that i is the imaginary unit  2 1i   and 

2.718281828e   is the base of the natural logarithms.  e in Euler's identities should not 

be confused with the eccentricity of the ellipsoid.   

Adding Euler's identities gives 2 cos i ie e     and replacing  with 2   gives 
2 22 cos 2 i ie e    .  Substituting this result into equation (218) gives 

 

 
  

 
 

 
  

2 2 2 2
2

2 2 2
2

2 2
2

1
1

1
1

1
1

1
1 1

1

i i

i i

i i

V n n e e
n

n ne ne
n

ne ne
n

 

 

 







   


   


  


 

Now an expression for 
3

1
V

 in equation (215) can be developed as 

 

 

      

     

3
2

3 3 3
2 2 2

3 3
2 2

2
3

2 2 2

3 2 2

1

1 1 1

1 1 1

i i

i i

V
V

n ne ne

n ne ne

 

 



   

 



   

     (219) 

Using equation (219) and the first of equations (217) in equation (215) gives 

      
3 3
2 23 2 21

1 1 1
1

i in
dm a n ne ne d

n
  

       
 (220) 
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Now        3 2 21
1 1 1 1 1

1
n

n n n n n
n

          
 and equation (220) becomes (Lauf 

1983, p. 36, eq'n 3.57) 

      
3 3
2 22 2 21 1 1 1i idm a n n ne ne d  

       (221) 

Using the binomial series as previously developed [see equation (204)] we may write 

 

 
3
22 2 2 4 3 6

4 8 5 10

3 3 5 3 5 7
1 1

2 2 4 2 4 6
3 5 7 9 3 5 7 9 11
2 4 6 8 2 4 6 8 10

i i i i

i i

ne ne n e n e

n e n e

   

 

   
    

  
      

  
      

 

and 

 

 
3
22 2 2 4 3 6

4 8 5 10

3 3 5 3 5 7
1 1

2 2 4 2 4 6
3 5 7 9 3 5 7 9 11
2 4 6 8 2 4 6 8 10

i i i i

i i

ne ne n e n e

n e n e

   

 

   

 

  
    

  
      

  
      

  

The product of these two series, after gathering terms, will be a series in terms 

 2 2 2 cos2i ie e    ,  4 4 2 cos 4i ie e    ,  6 6 2 cos6i ie e    , etc.; each term 

having coefficients involving powers of n.  Using this product in equation (221) and 

simplifying gives 

 

  



2 2 4

3 5

2 4

3 5

4

5

9 225
1 1 1

4 64
3 45 525

2 cos 2
2 16 128
15 105

2 cos 4
8 32
35 945

2 cos 6
16 256
315

2 cos 8
128
693

2 cos10
256

dm a n n n n

n n n

n n

n n

n

n d









 

     

       
      
      
     

     











   
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Integrating term-by-term using the standard integral result 
0

sin
cos

x
ax

ax dx
a

  gives the 

meridian distance m from the equator to a point in latitude   as 
 

   2
0 2 4 6 8 101 1 sin 2 sin 4 sin 6 sin 8 sin10m a n n a a a a a a              (222) 

 

where  

 

2 4
0

3 5
2

2 4
4

3 5
6

4
8

5
10

9 225
1

4 64
3 45 525
2 16 128
1 15 105
2 8 32
1 35 945
3 16 256
1 315
4 128
1 693
5 256

a n n

a n n n

a n n

a n n

a n

a n

   

   

      
      
     
     













  (223) 

 

Helmert's formula for meridian distance 

Jordan/Eggert/Kneissl (1958, p.83) in a section titled Helmertsche Formeln zur 

Rektifikation des Meridianbogens (Helmert's formula for meridian distance) outlines a 

method of derivation attributed to Helmert (1880) that is similar to the derivation in the 

previous section.  Their starting point (and presumably Helmert's) was 
 2

3

1a e

W



  and 

   
 

2
2

2

1
1

1
n

e
n


 


 rather than 

3

c
V

   and 
3

c
dm d

V
  as above but the end result 

(Jordan/Eggert/Kneissl 1958, eq'n 38, p.83) is similar in form to equation (222) but 

without the term 10 sin 10a   and the coefficients exclude all terms involving powers of n 

greater than 4n .  With these restrictions we give Helmert's formula as (Lauf 1983, p. 36, 

eq'n 3.55) 

 

    2
0 2 4 6 81 1 sin 2 sin 4 sin 6 sin 8m a n n b b b b b             (224) 
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where  

 

2 4
0

3
2

2 4
4

3
6

4
8

9 225
1

4 64
3 45
2 16
1 15 105
2 8 32
1 35
3 16
1 315
4 128

b n n

b n n

b n n

b n

b n

   

  

      
     
     











  (225) 

 

An alternative form of Helmert's formula 

An alternative form of Helmert's formula [equation (224)] can be developed by noting that 

 

     

  

2 2

2 2

1
1 1 1 1

1

1 1

1

n
n n n n

n

n n

n


    


 




 

Multiplying the coefficients 0 2 4 6 8, , ,  and b b b b b  by   2 21 1n n   gives 

 

  0 2 4 6 8sin 2 sin 4 sin 6 sin 8
1

a
m c c c c c

n
         


  (226) 

 

where  

 

 

 

2 4
0

3
2

2 4
4

3
6

4
8

1 1
1

4 64
3 1
2 8
15 1
16 4
35
48
315
512

c n n

c n n

c n n

c n

c n

   

      
      

 

 











  (227) 
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Equation (226) with expressions for the coefficients 0 2 4, ,  etc.,c c c  is, except for a slight 

change in notation, the same as Rapp (1982, p. 30, eq'n 95) who cites Helmert (1880) and 

is essentially the same as Baeschlin (1948, p. 50, eq'n 5.5) and Jordan/Eggert/Kneissl 

(1958, p.83-2, eq'ns 38 and 42) 

 

Latitude from Helmert's formula by reversion of a series 

Helmert's formula [equation (224)] gives meridian distance m as a function of latitude   

and powers of n and this formula (or another involving   and 2e  developed above) is 

necessary for the conversion of ,   to UTM projection coordinates E,N.  The reverse 

operation, E,N to ,   requires a method of computing   given m.  This could be done by 

a computer program implementing the Newton-Raphson scheme of iteration (described in 

a following section), or as it was in pre-computer days, by inverse interpolation of printed 

tables of latitudes and meridian distances.  An efficient direct formula can be obtained by 

"reversing" Helmert's formula using Lagrange's theorem to give a series formula for   as a 

function of an angular quantity   and powers of n; and  , as we shall see, is directly 

connected to the meridian distance m.  We thus have a direct way of computing   given 

m that is extremely useful in map projection computations. 

The following pages contain an expanded explanation of the very concise derivation set out 

in Lauf (1983); the only text on Geodesy where (to our knowledge) this useful technique 

and formula is set down. 

Using Helmert's formula [equation (224)] and substituting the value 1
2   gives a 

formula for the quadrant distance Q as 

 

   2 2 49 225
1 1 1

4 64 2
Q a n n n n

         
  (228) 

 

Also, we can establish two quantities: 

(i) G, the mean length of a meridian arc of one radian 

   2 2 4

1
2

9 225
1 1 1

4 64
Q

G a n n n n


          
  (229) 
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(ii)  , an angular quantity in radians and 

 
m
G

   (230) 

 

An expression for   as a function of   and powers of n is obtained by dividing equation 

(229) into Helmert's formula [equation (224)] giving 

 

3 2 4

2 4 2 4

3 4

2 4 2

3 45 15 105
12 16 8 32sin 2 sin 49 225 9 22521 1

4 64 4 64
35 315

1 116 128sin 69 225 9 2253 41 1
4 64 4 64

n n n n

n n n n

n n

n n n n

   



                                          
                 

 

 

 



4
sin 8

            





 (231) 

Using a special case of the binomial series [equation (199) with 1   ] 

   1 2 3 41 1x x x x x       

the numerator of each coefficient in the equation for   can be written as 

 

1 2
2 4 2 4 2 4

3
2 4

9 225 9 225 9 225
1 1

4 64 4 64 4 64

9 225
4 64

n n n n n n

n n

                             

      

  

 

 

and expanding the right-hand side and simplifying gives 

 
1

2 4 2 49 225 9 99
1 1

4 64 4 64
n n n n

          
   (232) 

Substituting equation (232) into equation (231), multiplying the terms and simplifying 

gives the equation for   as (Lauf 1983, p. 37, eq'n 3.67) 

 

 

3 2 4

3 4

3 9 15 15
sin 2 sin 4

2 16 16 32
35 315

sin 6 sin 8
48 512

m
n n n n

G

n n

   

 

                  
               

 

    (233) 
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If we require the value of   corresponding to a particular value of  , then the series (233) 

needs to be reversed.  This can be done using Lagrange's theorem (or Lagrange's 

expansion) a proof of which can be found in Carr (1970).   

Suppose that 

      or  y z xF y z y xF y     (234) 

then Lagrange's theorem states that 

 

                 

    

2 3 2
2 3

2

1

1

2! 3!

!

n n
n

n

x d x d
f y f z xF z f z F z f z F z f z

dz dz
x d

F z f z
n dz





               

   



  (235) 

 

In our case, comparing the variables in equations (233) and (234), z  , y   and 

1x  , and if we choose  f y y  then  f z z  and   1f z  .  So, in our case equation 

(233) can be expressed as 

  F     (236) 

and Lagrange's theorem gives 

           
2 1

2 3

2 1

1 1 1
2 6 !

n
n

n

d d d
F F F F

d d n d
     

  




                     (237) 

Now, comparing equations (236) and (233) the function  F   is 

 

  3 2 4

3 4

3 9 15 15
sin 2 sin 4

2 16 16 32
35 315

sin 6 sin 8
48 512

F n n n n

n n

  

 

                
               

 

    

and so replacing   with   gives the function  F   in equation (237) as 

 

  3 2 4

3 4

3 9 15 15
sin 2 sin 4

2 16 16 32
35 315

sin 6 sin 8
48 512

F n n n n

n n

  

 

                
               

 

    (238) 
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Squaring  F   gives 

 

  2 2 4 2 3

4 4 2

9 27 45
sin 2 sin 2 sin 4

4 16 16
35 225

sin 2 sin 6 sin 4
16 256

F n n n

n n

   

  

               
               

 

   

and expressing powers and products of trigonometric functions as multiple angles using 
2 1 1

2 2sin cos 2A A   and     1
2sin sin cos cosA B A B A B     gives, after some 

simplification 

 

  2 2 4 3 2 4

3 4

9 207 45 9 31
cos2 cos 4

8 512 32 8 16
45 785

cos6 cos8
32 512

F n n n n n

n n

  

 

                    
               

  

    

Differentiating with respect to   and then dividing by 2 gives the 3rd term in equation 

(237) as 

 

  2 3 2 4

3 4

1 45 9 31
sin 2 sin 4

2 32 4 8
135 785

sin 6 sin 8
32 128

d
F n n n

d

n n

  


 

                    
               

 

    (239) 

Using similar methods the 4th and 5th terms in equation (237) are 

 

  
2

3 3 4
2

3 4

1 27 135
sin 2 sin 4

6 16 16
81 135

sin 6 sin 8
16 8

d
F n n

d

n n

  


 

                     
               

 

   (240) 

   
3

4 4 4
3

1 27 27
sin 4 sin 8

24 4 2
d

F n n
d

  


                      
   (241) 

Substituting equations (238) to (241) into equation (237) and simplifying gives an equation 

for   as a function of   and powers of n as (Lauf 1983, p. 38, eq'n 3.72) 

 

 

3 2 4

3 4

3 27 21 55
sin 2 sin 4

2 32 16 32
151 1097

sin 6 sin 8
96 512

n n n n

n n

   

 

                 
               

 

    (242) 
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where 
m
G

   radians and G is given by equation (229).  This very useful series now gives 

a direct way of computing the latitude given a meridian distance. 

 

Latitude from Helmert's formula using Newton-Raphson iteration 

In the preceding section, Helmert's formula was "reversed" using Lagrange's theorem to 

give equation (242), a direct solution for the latitude   given the meridian distance m and 

the ellipsoid parameters.  As an alternative, a value for   can be computed using the 

Newton-Raphson method for the real roots of the equation   0f    given in the form of 

an iterative equation 

  
 
 1

n
n n

n

f

f


 

  


 (243) 

where n denotes the thn  iteration and  f   can be obtained from Helmert's formula 

[equation (224)] as 

      2
0 2 4 6 81 1 sin 2 sin 4 sin 6 sin 8f a n n b b b b b m              (244) 

The derivative     d
f f

d
 


   is given by 

      2
0 2 4 6 81 1 2 cos 2 4 cos 4 6 cos 6 8 cos 8f a n n b b b b b             (245) 

An initial value for   (for 1n  ) can be computed from 1

m
a

   and the functions  1f   

and  1f   evaluated from equations (244) and (245) using 1 .  2    for 2n   is now 

computed from equation (243) and this process repeated to obtain values 3 4, ,   .  This 

iterative process can be concluded when the difference between 1n   and n  reaches an 

acceptably small value. 

Newton-Raphson iteration is a numerical technique used for finding approximations to 

the roots of real valued functions and is attributed to Isaac Newton (1643-1727) and 

Joseph Raphson (1648-1715).  The technique evolved from investigations into methods 

of solving cubic and higher-order equations that were of interest to mathematicians in 

the 17th and 18th centuries.  The great French algebraist and statesman François Viète 

(1540-1603) presented methods for solving equations of second, third and fourth degree.  

He knew the connection between the positive roots of equations and the coefficients of 

the different powers of the unknown quantity and it is worth noting that the word 
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"coefficient" is actually due to Viète.  Newton was familiar with Viète's work, and in 

portions of unpublished notebooks (circa 1664) made extensive notes on Viète's method 

of solving the equation 3 30 14356197x x   and also demonstrated an iterative 

technique that we would now call the "secant method".  In modern notation, this 

method for solving an equation   0f x   is: 

  
   1

1

1

n n
n n n

n n

f x f x
x x f x

x x







 



 
 
  

 

In Newton's tract of 1669, De analysi perÆquationes numero terminorum infinitus ('On 

analysis by equations unlimited in the number of their terms') – chiefly noted for its 

initial announcement of the principle of fluxions (the calculus) – is the first recorded 

discussion of what we may call Newton's iterative method.  He applies his method to 

the solution of the cubic equation 3 2 5 0x x    and there is no reference to calculus 

in his development of the method; which suggests that Newton regarded this as a 

purely algebraic procedure.  The process described by Newton required an initial 

estimate 0x  hence 0x x p   where p is a small quantity.  This was substituted into 

the original equation and then expanded using the binomial theorem to give a 

polynomial in p as 

 

   

 

3

0 0

3 2 2 3
0 0 0 0

3 2 2 3
0 0 0 0

2 5 0

3 3 2 2 5 0

3 3 2 5 2

x p x p

x x p x p p x p

p x p x p x x

    

      

     

 

The second and high-order polynomial terms in p were discarded to calculate a 

numerical approximation 0p  from  2 3
0 0 0 03 2 5 2x p x x    .  Now 0p p q   (q 

much smaller than 0p ) is substituted into the polynomial for p, giving a polynomial in 

q, and a numerical approximation 0q  calculated by the same manner of discarding 

second and higher-order terms.  This laborious process was repeated until the small 

numerical terms, calculated at each stage, became insignificant.  The final result was 

the initial estimate 0x  plus the results of the polynomial computations 

0 0 0x x p q    instead of successive estimates kx  being updated and then used 

in the next computation.  This process is significantly different from the iterative 

technique currently used and known as Newton-Raphson.   

In 1690 Joseph Raphson published Analysis aequationum universalis in which he 

presented a new method for solving polynomial equations.  As an example, Raphson 

considers equations of the form 3 0a ba c    in the unknown a and proposes that if 

g is an estimate of the solution, then a better estimate can be obtained as g x  where 
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3

23

c bg g
x

g b

 



 

Formally, this is of the form    g x g f g f g    with   3f a a ba c   .  

Raphson then applies this formula iteratively to the equation 3 2 5 0x x   .  

Raphson's formulation was a significant development of Newton's method and the 

iterative formulation substantially improved the computational convenience.  The 

following comments on Raphson's technique, recorded in the Journal Book of the Royal 

Society are noteworthy. 

“30 July 1690:  Mr Halley related that Mr Ralphson [sic] had Invented a 

method of Solving all sorts of Aquations, and giving their Roots in Infinite 

Series, which Converge apace, and that he had desired of him an Equation 

of the fifth power to be proposed to him, to which he return'd Answers true 

to Seven Figures in much less time than it could have been effected by the 

Known methods of Vieta.” 

“17 December 1690: Mr Ralphson's Book was this day produced by E 

Halley, wherin he gives a Notable Improvement of ye method of Resolution 

of all sorts of Equations Shewing, how to Extract their Roots by a General 

Rule,which doubles the known figures of the Root known by each Operation, 

So yt by repeating 3 or 4 times he finds them true to Numbers of 8 or 10 

places.” 

It is interesting to note here that Raphson's technique is compared to that of Viète, 

while Newton's method is not mentioned, although it had, by then, appeared in Wallis' 

Algebra.  In the preface to his tract of 1690, Raphson refers to Newton's work but 

states that his own method is “not only, I believe, not of the same origin, but also, 

certainly, not with the same development”.  The two methods were long regarded by 

users as distinct, but the historian of mathematics, Florian Cajori writing in 1911 

recommended the use of the appellation ‘Newton-Raphson’ and this is now standard in 

mathematical texts describing Raphson's method with the notation of calculus. 

The information above is drawn from the articles; Thomas, D. J., 1990, 'Joseph 

Raphson, F.R.S.', Notes and Records of the Royal Society of London, Vol. 44, No. 2, 

(July 1990) pp. 151-167, and Tjalling, J., 1995, 'Historical development of the Newton-

Raphson method', SIAM Review, Vol. 37, No. 4, pp. 531-551.   
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1.3.3 Areas on the ellipsoid 

The area of a differentially small rectangle on the surface of the ellipsoid is given by 

equation (184) and (188) as 

 

2

2
cos

cos

c
dA J d d d d

V
d d

    

   

     
  (246) 

and integration gives the area of a rectangle bounded by meridians 1 2,   and parallels 

1 2,   as 

 
2 2

1 1

cosA d d
 

 

       (247) 

The area of a zone between parallels 1 2,   is 

 

2

1

2

1

2

0

cos

2 cos

A d d

d









   

   





 

  (248) 

The integral in equation (248) can be evaluated directly (a closed form solution) or by 

expanding the integrand into a series and then term-by-term integration (a series 

expansion solution).  Both solutions will be developed below. 

Series expansion solution for area of zone on ellipsoid 

Following Lauf (1983, pp. 38-39), Rapp (1982, pp.41-43) and Baeschlin (1948, pp. 58-62) 

and using equations (188) we may write the integrand of (248) as 

 
 2 2

4

1
cos cos

a e

W
  


  (249) 

and 
 

  22 2
24 2 2

1 1
1 sin

1 sin
e

W e





  


 (250) 

Using a special case of the binomial series [equation (199) with 2   ] 

   2 2 3 41 1 2 3 4 5x x x x x       
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we have 

 2 2 4 4 6 6 8 8 10 10
4

1
1 2 sin 3 sin 4 sin 5 sin 6 sine e e e e

W
           

and hence 

 
  



2

1

2 2 2 2 4 4

6 6 8 8 10 10

2 1 cos 2 cos sin 3 cos sin

4 cos sin 5 cos sin 6 cos sin

A a e e e

e e e d





     

      

   

   





 

Using the standard integral 
1sin

cos sin
1

n
n x

x x dx
n




 , term-by-term integration gives 

  
2

1

2 4 6
2 2 3 5 72 3 4

2 1 sin sin sin sin
3 5 7
e e e

A a e




    
 
      
  

  (251) 

To simplify this expression the powers of sin   can be expressed in terms of multiple 

angles using the standard form 

 

 
     

   

1
2 1

2 2

1

2 1 2 11
sin sin 2 1 sin 2 3 sin 2 5

1 22

2 1 2 1
sin 2 7 1 sin

3 1

n
n

n

n

n n
n n n

n n
n

n

   

 








                            
                          

  (252) 

Using equation (252) and the binomial coefficients 2 1
2 1

n
m

n
B

m


       
 computed using 

equation (202) gives 

 3 3 1
sin sin sin 3

4 4
     

 5 5 5 1
sin sin sin 3 sin 5

8 8 16
       

 7 35 35 21 1
sin sin sin 3 sin 5 sin 7

64 64 64 64
         

Substituting these results into equation (251) gives 
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 

2

1

2
2 2

4

6

2 3 1
2 1 sin sin sin 3

3 4 4

3 5 5 1
sin sin 3 sin 5

5 8 16 16

4 35 21 7 1
sin sin 3 sin 5 sin 7

7 64 64 64 64

e
A a e

e

e




   

  

   

         
      

         

 

Gathering coefficients of sinn  gives 

 

2 4 6
1

2 4 6
3

4 6
5

6
7

1 3 5
1

2 8 16
1 3 3
6 16 16

3 1
80 16

1
112

C e e e

C e e e

C e e

C e

    

         

  

       









 (253) 

and so the area can be expressed as 

    2

1

2 2
1 3 5 72 1 sin sin 3 sin 5 sin 7A a e C C C C




           (254) 

Evaluating equation (254) with the terminals 1  and 2  gives 

 
     

    

2 2
1 2 1 3 2 1

5 2 1 7 2 1

2 1 sin sin sin 3 sin 3

sin 5 sin 5 sin 7 sin 7

A a e C C

C C

    

   

    

    
 

Using the trigonometric relationship sin sin 2 sin cos
2 2

x y x y
x y

              
 and with the 

mean latitude m  and latitude difference   as 

 2 1
2 1   and   

2m

 
   


     (255) 

the surface area of a zone on an ellipsoid can be written as 

 

 

 2 2
1 3

5 7

4 1 sin cos sin 3 cos 3
2 2

sin 5 cos5 sin 7 cos7
2 2

m m

m m

A a e C C

C C

 
  

 
 

                      
                      

  (256) 
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For square-metre precision on the ellipsoid the number of terms in the series (256) may 

need to be increased with coefficients (253) extended to higher orders of eccentricity-

squared.  With the aid of the Computer Algebra System Maxima the coefficients (253) 

have been extended to order 12e  

 

2 4 6 8 10 12
1

2 4 6 8 10 12
3

4 6 8 10 12
5

6 8 10 12
7

1 3 5 35 63 231
1

2 8 16 128 256 1024
1 3 3 35 45 693
6 16 16 192 256 4096

3 1 5 45 385
80 16 64 512 4096

1 5 15 77
112 256 512 2048

C e e e e e e

C e e e e e e

C e e e e e

C e e e e

       

            

     

       









8 10 12
9

10 12
11

12
13

5 3 21
2304 512 2048

3 7
5632 4096
7

53248

C e e e

C e e

C e



   

        

 







(257) 

[Note: Baeschlin (1948, p. 61) has 43
8
e  in term 

3
C ; it should be 43

16
e ] 

Alternatively, using equations (246), (217) and (218) we may write 

 
 

 

2
2 2 2

2 2
2

1

1 2 cos2

a nc

V n n 

        
 

and the area of a zone between parallels 
1

  and 
2

  is 

 
 

 

2

1

2
2

2

2
2

1 cos
2

1 2 cos2

n
A a d

n n






 






 
  (258) 

With the aid of Maxima the integral can be expressed as 

 2

1

2
1 3 5 7

2 sin sin 3 sin 5 sin 7A a D D D D



             (259) 

and the surface area of a zone on the ellipsoid is 
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2
1 3

5 7

4 sin cos sin 3 cos 3
2 2

sin 5 cos5 sin 7 cos7
2 2

m m

m m

A a D D

D D

 
  

 
 

                     
                      

  (260) 

 

where the coefficients  k
D  are to order 6n  

 

2 3 4 5 6
1

2 3 4 5 6
3

2 3 4 5 6
5

3 4 5 6
7

4 5 6
9

5 6
11

6
13

1 2 2 2 2 2

2 2 2 2 2
3 3 3 3 3

3 4 2 2 2
5 5 5 5 5

4 5 2 2
7 7 7 7

5 2 2
9 3 9

6 7
11 11

7
13

D n n n n n n

D n n n n n n

D n n n n n

D n n n n

D n n n

D n n

D n

       

       

     

     

   

   

 















 (261) 

[Note: Lauf (1983, p. 79) has 22n  in term 
1

D ; it should be 2n ] 

Since 12 9.0 e-014e   and 6 2.2 e-017n   the series (260) with the coefficients  k
D  is 

more ‘efficient’ than series (256) with coefficients  k
C  since fewer terms are required in 

the coefficients. 

Closed form solution for area of zone on ellipsoid 

Again following Lauf (1983, pp. 38-39), Rapp (1982, pp.41-43) and Baeschlin (1948, pp. 58-

62) and using equations (248), (249) and (250), the area of a latitude zone on the ellipsoid 

between parallels 1 2,   is 

  
 

2

1

2 2
22 2

cos
2 1

1 sin
A a e d

e






 


 

  (262) 

For convenience, we consider a special case of (262) between the equator and latitude   

and noting that 2 2 2(1 )b a e   we write the area of a zone on the ellipsoid between the 

equator and latitude   as 
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 

2

2
2 2

0

cos
2

1 sin
A b d

e






 





  (263) 

Let sinx   then cosdx d   and with the terminals 0,   transformed to 

0, sinx   the area becomes 

 
 

sin
2 2

2
2 2

0

2 2
1

dx
A b b I

e x



   


  (264) 

where I is the integral 

 
   

sin sin

2 2
2 2 2 2

0 0

1

1 1

edxdx
I

ee x e x

 

 
 

   

To evaluate the integral, let u ex  then du edx  and with the terminals 0, sinx   

transformed to 0, sinu e   the integral I becomes 

 
 

sin

2
2

0

1

1

e
du

I
e u






  

Using the standard result 
 2 22

1 1 1
ln

4 1 2 11

du u u
u uu

                gives the integral I as 

 
2 2

1 1 1 sin sin
ln

2 2 1 sin 1 sin

e e
I

e e e

 
 

               
 (265) 

Also, using the inverse hyperbolic function 1 1 1
tanh ln

2 1
x

x
x


        

 for 1 1x    we may 

write 

  1

2 2

1 sin
tanh sin

2 1 sin

e
I e

e e







        
 (266) 

Substituting (265) or (266) into (264) gives the area of a zone on the ellipsoid between the 

equator and latitude   as 

 
 1

2 2

2 2 2 2

tanh sin1 1 sin sin sin
ln

2 1 sin 1 sin 1 sin

ee
A b b

e e ee e

  
 

  

                                
 (267) 
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The area of a zone on the ellipsoid between parallels 1 2,   is obtained from (267) by 

replacing   with 
2

  and 
1

  successively to give 

 
  
  

2 12 2 1
2 2 2 2

2 12 1

1 sin 1 sin sin sin1
ln

2 1 sin 1 sin1 sin 1 sin

e e
A b

e e ee e

   


  

                    

 (268) 

 

1.3.4 Surface area of ellipsoid 

The surface area of the ellipsoid can be determined by considering another special case of 

(262) between the equator 
1

0   and the pole 1
2 2

   and noting that 2 2 2(1 )b a e  .   

We write the area of the ellipsoid as 

 
 

2
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2
2 2

0

cos
4

1 sin
A b d

e




 





  (269) 

Following the previous method of evaluating the integral leads to 

 

1
22

2 2

0

2 1 1 sin sin
ln

2 1 sin 1 sin

b e e
A

e e e

 



  
 





             
 

which gives the surface area of the ellipsoid as (Rapp, 1982) 
 

 2

2

1 1 1
2 ln

2 1 1

e
A b

e e e


               
 (270) 

 

Baeschlin (1948) and Lauf (1983) have the equivalent formula 
 

 
2

2 1 1
2 1 ln

2 1
e e

A a
e e


                

 (271) 
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1.3.5 Volume of ellipsoid 
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Figure 23:  Element of volume dV r d dr dz  

 

With 2 2 2r x y   the Cartesian equation of the ellipsoid is 
2 2

2 2
1

r z
a b

   and the volume of 

the ellipsoid is twice the volume of the hemi-ellipsoid or ellipsoid hemi2V V  where 

 
 

 

 

 2 2 2 2 2 2

1 1 1 1 1 1

hemi

r z r r z r

r z r r z r

V dV dz d r dr dz d r dr
 

 

 
                 

        

and dV r d dr dz  is the element of volume.  The integration terminals are: 

 (i) for z, from 1 0z   to 2 2
2

b
z a r

a
   

 (ii) for  , from 1 0   to 2 2   

 (iii) for r, from 1 0r   to 2r a  

Evaluating the integrals in turn gives 

  

2

2
1

1

2 2
2 1

z

z
z

z

b
dz z z z a r

a
      
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2

1

2 2 2 22
b b

a r d a r
a a





     

and the volume of a hemi-ellipsoid is 

 

 

 

2
1
2

1

1
2

2 2 2 2
hemi

0

2 2

0

2 2

2

r a

r

a

b b
V a x r dr r a r dr

a a

b
r a r dr

a

 



   

   

 


 

Let 2 2u a r  , then 2du r dr   and the terminals 0,r a  become 2, 0u a  and 

 
1 3
2 2

2
2

0 0
2

hemi

2 2
3 3aa

b b
V u du u a b

a a
   

     
    

giving the volume of the ellipsoid as 

 2
ellipsoid hemi

4
2

3
V V a b


   (272) 

 

1.3.6 Sphere versus ellipsoid 

For certain purposes, it is sufficient to replace the ellipsoid by a sphere of appropriate 

radius.  There are several different spheres (of different radius) that may be adopted. 

1. A sphere having a radius equal to the mean of the 3 semi-axes of the ellipsoid 

 
2

3m

a b
R


  (273) 

 [Note here that in mathematics an ellipsoid is a surface defined by 
2 2 2

2 2 2
1

x y z
a b c

    

and has three semi-axes a, b, and c.  The term tri-axial could be used to distinguish 

this ellipsoid from the (bi-axial) ellipsoid of geodesy 
2 2 2

2 2 2
1

x y z
a a b

   ] 

2. A sphere having the same surface area as the ellipsoid [see equation 

Error! Reference source not found.] 

 2
2 2

surface area of sphere = surface area of ellipsoid

1 1
4 2 1 ln

2 1A

e e
R a

e e
 

             

 



RMIT University Geospatial Science 

 

 

 

Geometric Geodesy A (January 2013) 87 

 giving 

 
2 2

2 1 1
1 ln

2 2 1A

a e e
R

e e

             
 (274) 

 

3. A sphere having the same volume as the ellipsoid [see equation (272)] 

 
3 2

volume of sphere = volume of ellipsoid

4 4
3 3VR a b 

 

 giving 

 3 2
AR a b  (275) 

 

4. A sphere having the same quadrant distance as the ellipsoid [see equation (228)] 

 
  2 2 4

quadrant distance of sphere = quadrant distance of ellipsoid

2 9 225
1 1 1

4 4 64 2
QR

a n n n n
          



 

 giving 

   2 2 49 225
1 1 1

4 64QR a n n n n
         

  (276) 

 

1.3.7 Geometric parameters of certain ellipsoids 

Prior to 1967 the geometric parameters of various ellipsoids were determined from analysis 

of arc measurements and or astronomic observations in various regions of the Earth, the 

resulting parameters reflecting the size and shape of "best fit" ellipsoids for those regions – 

the International Ellipsoid of 1924 was adopted by the International Association of 

Geodesy (at its general assembly in Madrid in 1924) as a best fit of the entire Earth.  In 

1967 the International Astronomic Union (IAU) and the International Union of Geodesy 

and Geophysics (IUGG) defined a set of four physical parameters for the Geodetic 

Reference System 1967 based on the theory of a geocentric equipotential ellipsoid.  These 

were: a, the equatorial radius of the Earth, GM, the geocentric gravitational constant (the 

product of the Universal Gravitational Constant G and the mass of the Earth M, including 
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the atmosphere), 2J , the dynamical form factor of the Earth and  , the angular velocity 

of the Earth's rotation.  The geometric parameters 2e  and f of an ellipsoid (known as the 

normal ellipsoid) can be derived from these defining parameters as well as the gravitational 

potential of the ellipsoid and the value of gravity on the ellipsoid (known as normal 

gravity). 

Table 1 shows the geometric parameters of various ellipsoids. 

 

Date Name a (metres) 1/f 

1830 Airy 6377563.396 299.324964600 

1830 Everest (India) 6377276.345 300.801700000 

1880 Clarke 6378249.145 293.465000000 

1924 International 6378388 (exact) 297.0 (exact) 

1966 Australian National Spheroid (ANS) 6378160 (exact) 298.25 (exact) 

1967 Geodetic Reference System (GRS67) 6378160 (exact) 298.247167427 

1980 Geodetic Reference System (GRS80) 6378137 (exact) 298.257222101 

1984 World Geodetic System (WGS84) 6378137 (exact) 298.257223563 

 

 Table 1:  Geometric parameters of selected ellipsoids. 

  From Appendix A1, Technical Report, Department of 

  Defense World Geodetic System 1984 (NIMA 2000) 

The Geodetic Reference System 1980 (GRS80), adopted by the XVII General Assembly of 

the IUGG in Canberra, December 1979 is the current estimate with 6378137 ma  , 
8 3 23986005 10  m sGM   , 8

2 108263 10J    and 11 -17292115 10  rad s    (BG 1988).  

The World Geodetic System 1984 (WGS84), the datum for the Global Positioning System 

(GPS), is based on the GRS80, except that the dynamical form factor of the Earth is 

expressed in a modified form, causing very small differences between derived parameters of 

the GRS80 and WGS84 ellipsoids (NIMA 2000).  These differences can be regarded as 

negligible for all practical purposes (e.g., a difference of 0.0001 m in the semi-minor axes).  

The Geocentric Datum of Australia (GDA) uses the GRS80 ellipsoid as its reference 

ellipsoid. 
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1.3.8 Constants of the GRS80 ellipsoid 

The GRS80 ellipsoid is defined by the two geometric parameters: 

 semi-major axis: 6378137 metresa   

 flattening: 1 298.257222101f   

These two defining parameters and other computed constants for the GRS80 ellipsoid are: 

 

 

 

 
 

2

2
2

6 378137 metres

1 6356752.314 metres

6399593.626 metres
1

2 6.694 380023e-003

2
6.739496775e-003

1

1 298.257222101 3.352810681e-003

1.679220395e-003
2

quadrant distance  1000

a

b a f

a
c

f

e f f

f f
e

f

f

f
n

f
Q



  

 


  

  


 

 


 1965.729 metres

surface area          5.10065622e+014 square-metres

volume                1.08320732e+021 cubic-metres

A

V





 

The powers of several of these constants are 

 

2 2

4 4

6 6

8 8

10 10

12 10

6.694 380023e-003 6.739496775 e-003

4.4814724 e-005 4.5420817 e-005

3.00007 e-007 3.06113 e-007

2.008 e-009 2.063 e-009

1.3 e-011 1.4 e-011

9.0 e-014 9.4 e-014

3.352810681 e-003

e e

e e

e e

e e

e e

e e

f

 
 
 
 
 
 


2 2

3 3

4 4

5 5

6 6

1.679220395 e-003

1.1241339 e-005 2.8197811 e-006

3.7690 e-008 4.7350 e-009

1.26 e-010 7.95 e-012

4.2 e-013 1.3 e-014

1.4 e-015 2.2 e-017

n

f n

f n

f n

f n

f n



 

 

 

 

 
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From the above, it is clear that the higher powers of n are much smaller than the higher 

powers of the other constants, so that in general, a series involving powers of n will 

converge more rapidly than a series involving the powers of other constants.  See equations 

for meridian distance for an example. 

The radii of equivalent spheres are: 

 

6 371008.771 metres

6371007.181 metres

6371000.790 metres

6367 449.146 metres

m

A

V

Q

R

R

R

R









 

 

1.3.9 Constants of the GRS80 ellipsoid at latitude φ 

At a point P on the surface of the ellipsoid having latitude 37 48 33.1234      the 

latitude functions W and V are: 

 

2 2 2

2 2 2

1 sin 0.997 484181

0.998741298

1 cos 1.004206722

1.002101154

W e

W

V e

V





  



  



 

and the radii of curvature are: 

 
 

 

2

3 3

2 2

prime vertical 6 386175.289 metres

1
meridian 6359422.962 metres

1
mean 6372785.088 metresm

a c
W V
a e c

W V
a f c

W V





 

  


  


   

 

The meridian distance from the equator to P is [using equation (224)] with the coefficients 

0 2, , etc.b b  
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2 4
0

3
2

2 4
4

3
6

4
8

9 225
1 1.000006345e+000

4 64
3 45

2.518 843909e-003
2 16
1 15 105

2.643557 858e-006
2 8 32
1 35

3.452628950e-009
3 16
1 315

4.891830424e-012
4 128

b n n

b n n

b n n

b n

b n

    

   

      
     
     











 

gives the meridian distance on the GRS80 ellipsoid as 

 

   

 

 

 

 

2
0 2 4 6 81 1 sin2 sin 4 sin 6 sin 8

111132.952547 16038.508741sin 2

16.832613 sin 4

0.021984 sin 6

0.000031sin 8

m a n n b b b b b    

 







       

 














 

Substituting in the latitude 37 48 33.1234 37.809200944        

gives 4186320.340 metresm  . 
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2 TRANSFORMATIONS BETWEEN CARTESIAN 
COORDINATES x,y,z AND GEODETIC COORDINATES φ

λ
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Figure 24:  P related to the reference ellipsoid 

A point P in space is connected to the ellipsoid via a normal to the surface PH that 

intersects the surface at Q.  H is the intersection of the normal and the z-axis and P is at a 

height h QP  above/below the ellipsoid.  The normal passing through P intersects the 

equatorial plane xOy at D making an angle   (latitude) and the normal also lies in the 

meridian plane ONQ, making an angle   (longitude) with the Greenwich meridian plane.  

We say then that P has geodetic coordinates , ,h  .  [Note that Q has the same ,   

coordinates as P, but 0h  .  Q is the projection of P onto the surface via the normal.]  P 

also has Cartesian coordinates x,y,z.  The origin of both coordinate systems is at the centre 

O of the ellipsoid. 

Figure 25 (a) shows the meridian ellipse (meridian normal section) in the meridian plane 

zOp.  P is in this plane and is connected to the ellipse via the normal.  The normal cuts 

the ellipse at Q, the equatorial plane at D and the z-axis at H.  The centre of curvature of 

the meridian ellipse at Q lies on the normal at C.  The centre of curvature of the prime 

vertical normal section (an ellipse in a plane perpendicular to the meridian plane) at Q lies 

on the normal at H.  P   is the projection of P onto the equatorial plane of the ellipsoid.  
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Also, the auxiliary circle is shown with Q   projected onto the circle via a normal to the p-

axis, and the parametric latitude   and geocentric latitude   of Q are shown. 

Figure 25(b) shows the equatorial plane of the ellipsoid and P   is the projection of P. 

·

·

·

·

·
· ·

·

P

C

p

z



H

O

N

a

b

D

Q

P¢
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y
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

O

(a) (b)

F

E

equator

P related to the meridian ellipse P  ¢ on the equatorial plane

h

p




Q¢

auxiliary circle

 

Figure 25:  Connection between Cartesian and geodetic coordinates 

The following relationships have been established; see equations (48) to (51), the 

interrelationships between ellipse parameters, equations (28) to (37) and the relationships 

between latitudes, equations (54) to (56). 

   radius of curvature in prime vertical section
a c

QH
W V

    

      2 2 21 1 1
a c b

QD e e e
W V V

        

 2 2 2sin sin sin
a c

OH e e e
W V

       

 2 2 2a c
DH e e e

W V
    

 latitudes:   geodeticQDP      geocentricQOP      parametricQ OP     

 latitudes are related by:  2tan 1 tanf    and  tan 1 tanf    

Now in Figure 25, with PH QH QP h    , we have; 

  cosOP h     
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     2 2sin sin 1 sinPP h e e h             

  cos cos cosOE OP h       

  sin cos sinOF OP h       

The distances OE, OF and PP   are the x,y,z Cartesian coordinates of P respectively. 

For various purposes, it is often required to transform from , ,h   to x,y,z coordinates and 

conversely.  These transformations are explained in the following sections. 

2.1 Cartesian coords x,y,z given geodetic coords φ  

The transformation , , , ,h x y z    is accomplished by the following: 

 

 

 

 

    
2

2

cos cos cos cos cos cos

cos sin cos cos cos sin

1
sin sin 1 sin

a c
x h h h

W V
a c

y h h h
W V

a e b
z h h e h

W V

      

      

   

                
                
                 

 (277) 

 

with variable domains:  20, 0, 1 0h e h         and 1 1
2 2     , 

       

where 

 

 

 

 
 

 

2

2 2 2 2 2 2

2 2
2

1

1 cos 1 sin

1
1

2
2

1

a c b
e

W V V
V e W e

a
b a f c

f

f f
e f f e

f

 

 

   

   

  


  


 (278) 

 



RMIT University Geospatial Science 

 

 

 

Geometric Geodesy A (January 2013) 95 

2.2 Geodetic coords φ  given Cartesian coords x,y,z 

The following relationships can be established from equations (277) 

 

1
2

2 1
2

1
2

,  provided 0, ,
cos sin

, provided 0,
sin cos

, provided 
cos

x y
p

z p
e

p
h

  
 

  
 

  


   

   

  

 (279) 

where p is the perpendicular distance from the z-axis (the rotational axis) 

 2 2 0p x y    (280) 

From the first equation of (279), sin
y
p

   and cos
x
p

  .  These relationships seem 

preferable to evaluate   than 6 tan
y
x

  , since each function, sine and cosine, is 

2 -periodic  whereas tangent is -periodic . 

Choosing sin
y
p

   and solving for   gives 

 

0,  if 0, 0

arcsin ,  if 0
arcsin ,  if 0, 0

arcsin ,  if 0, 0
arcsin ,  if 0, 0

,  if 0, 0

arcsin ,  if 0, 0

x y
y

xy px yp

y
x y yp x yp

x y

y
x yp


 





                            

 

thus  ,     as desired. 

                                      

6 tan y x   is the usual formula for evaluating  , but requires inspection of x to avoid division by zero, 

and then inspection of the signs of x and y to determine the correct value       since 
1 1
2 2arctan y x    .  Note: the  atan2 y,x  function, common to many computer languages, will return 

     . 
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These expressions for   can be combined into 

       1
2 1 sgn sgn sgn arcsin

y
x y x

p
     (281) 

using the signum function 

  
1,  if 0

sgn
1,  if 0

x
x

x

   
 (282) 

Choosing to evaluate   from cos
x
p

   and with similar reasoning to the development of 

  from sin
y
p

   leads to 

  sgn arccos
x

y
p

   (283) 

The second of equations (279) can be written as 

 2tan sinp z e     (284) 

or 

 2 2 2 2 2cos 1 sin sin cos sin 1 sinz e ae p e          (285) 

using 
2 21 sin

a

e






. 

The following conditions can be determined. 

If 0z  , equation (284) reduces to  2sin cos 0p e     whose only feasible solution 

(provided that 2 cosp e  ) is 0  , since 1 1
2 2     .  So, provided 2 cosp e  , 

0   implies 0z  . 

If 0x y   and 0z  , then 0p   and equation (285) reduces to  2cos sin 0z e     

whose only feasible solution (provided 2 sinz e  ) is 1
2   whereas if 0z  , the 

only feasible solution is 1
2   , provided 2 sinz e  .  So, provided 2 sinz e  , 

1
2    implies 0x y  . 

We can see from these conditions that there is a spherical region of radius 2e  centred at 

O, the centre of the ellipsoid, within which, solutions for   will not be unique.  We can 

avoid possible ambiguities in solutions for   by specifying a lower bound for the height h 

of points as 5000 mh  . 
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Using equations (281), (283), (284) and the last of equations (279), the transformation 

, , , ,x y z h   is accomplished by 

 

      

 

1
2

2

1 sgn sgn sgn arcsin

sgn arccos

tan sin

cos

y
x y x

p
x

y
p

p z e

p
h




  




   
 

 

 (286) 

 

This transformation is not straightforward.  While   can be readily computed from y and 

p, or x and p the same cannot be said for  , (and thus h) as there are no simple 

relationships linking   with x,y,z [see the second of equations (286) where functions of   

are on both sides of the equation].  Various techniques for computing   are well 

documented in the literature and they fall into two categories: iterative solutions and 

direct solutions. 

Direct solutions for   involve the formation of quartic equations (an algebraic equation of 

the 4th-degree) which are reduced to cubic equations having a single real root [e.g., Paul 

1973, Ozone 1985, Lapaine 1990 and Vermeille 2002]. 

Iterative solutions are generally simpler than direct solutions and some do not require a 2nd 

iteration if points are reasonably close to the ellipsoid  5,000m 10,000mh   , and they 

fall into two groups; (i) trigonometric [e.g., Bowring 1973, Borkowski 1989, Laskowski 1991 

and Jones 2002] where formula involve trigonometric relationships and (ii) vector [e.g., Lin 

and Wang 1995 and Pollard 2002] where formula are derived from vector relationships.  

Iterative solutions are usually easier to program and generally require less evaluations of 

square-roots, exponentiations and trigonometric functions than direct solutions.  These 

evaluations are computer-time-intensive and slow the computation of multiple positions; 

hence iterative solutions for   are often regarded as being faster than direct solutions. 

We will discuss five methods: (i) Successive Substitution, (ii) Newton-Raphson Iteration 

(iii) Bowring's method, (iv) Lin & Wang's method and (v) Paul's method as being 

representative of the various methods of computing   and performing the transformation 

, , , ,x y z h  . 
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2.2.1 Successive Substitution 

This technique, described in various forms in the literature, owes its popularity to its 

programming simplicity.  The basis for the method is the second of equations (286), 

namely 

 2tan sinp z e     (287) 

An approximate value 0  is used in the right-hand-side (RHS) of equation (287) to 

evaluate 1tanp   (and hence 1 ) on the left-hand-side (LHS).  This new value, 1  is then 

used in the RHS to give the next value, 2tanp   (and hence 2 ).  This procedure is 

repeated until the difference between successive LHS values 1,n n    reaches an acceptable 

limit.  Thus the iteration, providing certain conditions are met (see below), converges to a 

solution for tanp   and hence  . 

The starting value 0  is obtained from the relationship between geocentric and geodetic 

latitude:  2 01 tan tan
z

f
p

     giving 

 
 0 2tan
1

z
p f

 


 (288) 

A note on convergence criteria of Successive Substitution is appropriate here.   

Equation (287) can be expressed as 

   2 sin tanf z e p       

and the sufficient condition for Successive Substitution to converge to a solution for   is 

  1f    where    
d

f f
d

 


  .  The evaluation of this derivative is covered in the next 

section where it is found to be   2
3 2

cos
cos

c p
f e

V
 


   .  Now the extreme values for 

 f   are when 0   and 
2


       
 where   is a very small quantity, since this 

method is applicable only if 0p   and: 

 (i) when 0   and  
3
23 2cos 1, 1 1V e      and   2f ce p   ; 

 (ii) when 
2


       
 and 3cos , 1V    and   2 p

f ce 


    
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So, provided that 2p ce  the criteria for convergence should be satisfied.  For the GRS80 

ellipsoid 2 43130 mce  . 

 

2.2.2 Newton-Raphson Iteration 

The rate of convergence for   in the Successive Substitution solution can be improved by 

using Newton-Raphson iteration for the real roots of the equation   0f    given in the 

form of an iterative equation 

 
 
 1

n
n n

n

f

f


 

  


 (289) 

where n denotes the nth iteration and  f  , from equations (286) is 

   2 sin tanf z e p       (290) 

and the derivative     d
f f

d
 


   is given by 

   2 2
2

cos sin
cos

d p
f e e

d


   
 

     (291) 

Now 
c
V

   and noting that 2 2 21 cosV e    and 
2

cos sin
dV e
d V

 



   then 

 2
2 3

cos sin
d c dV c

e
d V d V


 
 

    (292) 

Substituting equation (292) into equation (291) gives 

 

 

 

 

 

2 2
2

3 2

2 2 2 2 2
3 2

2 2 2 2
3 2

2 2
3 2

sin
cos

cos

cos cos
cos

cos 1
cos

cos 1
cos

c ce p
f e

V V
c p

e V e e
V
c p

e V e V
V
c p

e e
V


 



 








          

    

    

    (293) 

But, from equation (32) 
2

2
2

1
e

e
e


   and equation (293) becomes 

   2
3 2

cos
cos

c p
f e

V
 


    (294) 



RMIT University Geospatial Science 

 

 

 

Geometric Geodesy A (January 2013) 100 

Alternatively, from equations (28) and (25) 
2 2

2
2 2

1
a c

e
b a

   , and equation (293) becomes 

  
3

2
2 3 2

cos
cos

c p
f e

a V
 


    (295) 

A starting value 0  can be obtained from equation (288) and the iteration continued until 

the correction factor 
 
 

n
n

n

f

f





 


 in equation (289) reaches an acceptably small 

magnitude. 

 

2.2.3 Bowring's method 

This method (Bowring 1976) is one of the iterative methods, but second or third iterations 

are not required if we are dealing with Earth-bound points where 5,000m 10,000mh    

(Bowring 1976, p.326). 

From the parametric equations of the evolute of an ellipse [see equations (78)] we may 

write the z- and p-coordinates of the centre of curvature C in Figures 25(a) and 26 as 

 
2 3

2 3

sin

cos

C

C

z be

p ae





 


 (296) 

and the expression for tan  in terms of the parametric latitude   can be obtained from 

Figure 26 as 

·

·

·

·

·
P

C

p

z



H

O

N

a

b Q

P¢

h

be¢2sin3ae 2cos3

 

Figure 26:  Coordinates of centre of curvature C 
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2 3

2 3

sin
tan

cos
z be
p ae










 (297) 

Equation (297) in conjunction with  tan 1 tanf    can be solved simultaneously for 

 , and if necessary  , iteratively. 

Similarly to Successive Substitution, a starting value 0  is obtained from the relationship 

between geocentric and parametric latitude:   01 tan tan
z

f
p

     giving 

 
 0tan
1
z

p f
 


 (298) 

Bowring (1976) shows that for all Earth-bound points  5,000m 10,000mh    the 

maximum error in  , induced by using only a single iteration, is 0.000000030 . 

For points in space where 10,000 mh   a second (or perhaps even a third) iteration of 

Bowring's equation may be required.  These iterations may be performed in two ways:  

(i) Successive Substitution, i.e., calculating a new value of the parametric latitude   

from  tan 1 tanf    and using this new value in the RHS of equation (297) to 

give an improved vale of  ; and so on until the difference between successive LHS 

values 1,n n    reaches an acceptable limit. 

(ii) Using  tan 1 tanf    in (297) and re-arranging gives 

 
2 3

2 3

tan sin
1 cos

z be
f p ae

 





 
 (299) 

 and   obtained by Newton-Raphson iteration for the real roots of the equation 

  0f    given in the form of an iterative equation 

 
 
 1

n

n n

n

f

f


 

  


 (300) 

 where n denotes the nth iteration and  f  , from equation (299) is 

       2 3 2 3cos tan 1 sinf p ae f z be         (301) 

 and the derivative     d
f f

d
 


  .  Noting that 2tan sec

d
d

 


  and  
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 3 2 3 2cos 3 cos sin ; sin 3 sin cos
d d

d d
     

 
    then 

 
       

 
2 3 2 2 2 2 2

2 2 2 2 2 2

cos sec tan 3 cos sin 1 3 sin cos

sec cos 3 cos sin 3 1 cos sin

f p ae ae f be

p ae ae f be

       

     

     

    
 

 Now from the interrelationship between ellipse parameters (see section 1.1.5) we find 

  2 21 f be ae   and the derivative can be expressed as 

   2

2
cos

cos

p
f ae 


    (302) 

 A starting value 
0

  can be obtained from equation (298) and the iteration continued 

until the continued until the correction factor 
 
 

n

n

n

f

f





 


 in equation (300) 

reaches an acceptably small magnitude. 

It should be noted here that for h = 26,000,000 m (A GPS satellite has an approximate 

orbital height of 20,000,000 m) only two iterations are required for acceptable accuracy. 

 

2.2.4 Lin and Wang's method 

This elegant iterative method (Lin & Wang 1995) uses Newton-Raphson iteration to 

evaluate a scalar multiplier q of the normal vector to the ellipsoid.  Once q is obtained, 

simple relationships between Cartesian coordinates of P, and its normal projection Q onto 

the ellipsoid at P, are used to evaluate the Cartesian coordinates of Q; thus allowing 

geodetic latitude   to be computed from the relationship  2
2 2

1 tanQ

Q Q

z
f

x y
 


, since 

2 2
tan Q Q

Q Q Q

z z

p x y
 


 . 

An outline of the development of the necessary equations is given below, and relies upon 

some aspects of differential geometry of surfaces. 
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Recalling section 1.2.1 Differential Geometry of Space Curves, a curve C in space is defined 

as the locus of the terminal points P of a position vector  tr  defined by a single scalar 

parameter t, 

        t x t y t z t  r i j k  (303) 

and i, j, k are fixed unit Cartesian vectors in the directions of the x,y,z coordinate axes.   

If this curve C is constrained to lie on a surface 

  , ,  constantx y z    (304) 

then the scalar components of the position vector (303) must satisfy equation (304); thus 

       , ,  constantx t y t z t   (305) 

As the parameter t varies, the terminal point of the vector sweeps out C on the surface 

and if s is the arc length from some point on C, then s is a function of t and x,y,z are 

functions of s.  The unit tangent vector t̂  of the curve C in the direction of increasing s is 

given by 

 ˆ d dx dy dz
ds ds ds ds

   
r

t i j k  (306) 

and at a fixed point P on the surface  , ,  constantx y z   there are an infinite number of 

curves C passing through P.   Hence, the tangent vectors at P will all lie in the tangent 

plane of the surface at P and the normal to this plane is the surface normal vector of   at 

P.  Differentiating equation (305) with respect to s, we obtain via the chain rule 

 0
dx dy dz

x ds y ds z ds
    

  
  

 (307) 

Now, define a vector differential operator   (del or nabla) as 

 
x y z
  

   
  

i j k  (308) 

so that  

 
x y z
  


  

   
  

i j k  (309) 

Then equation (307) can be expressed as 

 ˆ 0 t  (310) 
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Because this scalar product is zero,   must be perpendicular to the tangent plane and so 

in the direction of the surface normal.  Lin & Wang use this result in the following way. 

The Cartesian equation of the ellipsoid at Q is 

 
2 2 2

2 2 2
1Q Q Qx y z

a a b
    (311) 

and this is a surface having the general form  , ,  constantQ Q Qx y z  .  Using equation 

(309) then 

 
2 2 2

2 2 2Q Q Q
Q

x y z

a a b
   i j k  (312) 

The vector QP


 is 

      P Q P Q P QQP x x y y z z     i j k


 (313) 

and QP


 (being normal to the surface at Q) is also a scalar (denoted by q) multiple of the 

surface normal   at Q, thus 

 
2 2 2

2 2 2Q Q Qqx qy qz
QP

a a b
  i j k



 (314) 

Equating the scalar components of vectors (313) and (314), and re-arranging gives 

 
2 2 2

; ;
2 2 2

Q Q QP P P
x y zax ay bz
a a q a a q b b q

  
  

 (315) 

Squaring each equation above, then substituting into equation (311) gives 

  
   

2 2 2 2

2 22 2
1

2 2
P Pa p b z

f q
a q b q

  
 

 (316) 

and q can be obtained by using Newton-Raphson iteration for the real roots of the 

equation   0f q   given in the form of an iterative equation 

 
 
 1

n
n n

n

f q
q q

f q  


 (317) 

where n denotes the nth iteration, and the function  nf q  and its derivative 

    n n
n

d
f q f q

dq
   are given as 

  
   

2 2 2 2

2 22 2
1

2 2
P P

n

a p b z
f q

a q b q
  

 
 (318) 
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  
   

2 2 2 2

3 32 2
4

2 2
P P

n

a p b z
f q

a q b q

             
 (319) 

Lin and Wang (1995, p. 301) suggest an initial approximation 

 
   

 

3
2 2 2 2 2 2 2 2 2 22

0 4 2 4 22
P P P P

P P

ab a z b p a b a z b p
q

a z b p

  



 (320) 

After calculating q, Qp  and Qz  are obtained from equations (315) as 

 

2

2

2

2

2

2

P
Q

P
Q

a p
p

a q

b z
z

b q







 (321) 

and the latitude   and height h obtained from 

 
   

   

2 2

2 2

tan
11

Q Q

QQ

P Q P Q

z z

e pf p

h p p z z

  


    

 (322) 

noting that h is negative if P P Q Qp z p z    

The attraction of this method, compared to other iterative solutions, is that no 

trigonometric functions are used in the calculation of tan  and h. 

It should be noted here that for all Earth-bound points  5,000m 10,000mh    Lin & 

Wang's method requires only a single iteration for acceptable accuracy. 

For points in space where 10,000 mh   a second (or perhaps even a third) iteration may 

be required and for h = 26,000,000 m (A GPS satellite has an approximate orbital height 

of 20,000,000 m) two iterations are required for acceptable accuracy. 
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2.2.5 Paul's method 

This method (Paul 1973) is direct in so far as tan  is obtained from a simple closed 

equation, but only after several intermediate variables have been evaluated.  An outline of 

the development of the necessary equations is given below. 

From the second of equations (279) 

 2tan sinp z e     (323) 

and the equation for   (radius of curvature) can be re-arranged as 

 

 

 

  

1
2

1
2

1
2

2 2

2 2 2 2

2 2 2

1 sin

cos sin sin

cos 1 sin

a a
W e

a

e
a

e




  

 

 



 


 

 

Substituting this result for   into equation (323) gives 

 
     

1 1
2 2

2 2

2 2 2 2 2

sin tan
tan

cos 1 sin 1 1 tan

ae ae
p z

e e

 


  
  

   
 (324) 

Squaring both sides of equation (324) and re-arranging gives 

     2 2 2 2 2 2 4 2tan 2 tan 1 1 tan tanp pz z e a e         

Multiplying the LHS, then gathering terms and re-arranging so that the RHS is zero and 

then dividing both sides by 21 e  gives 

 
2 2 4 2

2 4 3 2 2
2 2 2

2
tan 2 tan tan tan 0

1 1 1
p a e pz z

p pz z
e e e

   
            

 (325) 

Letting 

 
2 2 4

21
p a e

e






 (326) 

and multiplying equation (325) by 2p  gives 

  
2 2 2

4 4 3 3 2 2 2
2 2

2
tan 2 tan tan tan 0

1 1
zp z p

p z p z p p
e e

         
 

 (327) 
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Equation (327) is a quartic equation in tan , for which there are direct solutions for the 

four possible values of tan ; which could all be real, or all complex, or some real and the 

others complex.  It turns out that this equation can be expressed in terms of a subsidiary 

value   which itself a function of the roots of a cubic equation having a single real root.  

Hence by means of appropriate substitutions we are able to find the single real value of 

tan  from equation (327).  The method of solving quartic equations, by reduction to a 

cubic whose solution is known, was first developed in 1540 by Lodivico Ferrari (1522-1565) 

who resided in Bologna, Papal States (now Italy), the technique set out below is a 

modification of his general method. 

Let tan
2
z

p     (328) 

where   is a subsidiary variable; then expressions for 2 2tanp  , 3 3tanp   and 4 4tanp   

can be substituted into equation (327) to give, after some algebra, a quartic equation in  , 

but with no 3 -term. 

 
2 2

4 2 2 0
2 4 16
z z

z z


    
                  

 (329) 

where 
2 2 4

21
p a e

e






 (330) 

Now, assuming a solution of equation (329) is 

 1 2 3t t t     (331) 

where 1 2 3, ,t t t  are the roots of the cubic equation 3 2
1 2 3 0t a t a t a    , the following 

relationships can be established, noting that 1 2 3A t t t    

 

 

 
 

2
1 2 3 1 2 1 3 2 3

1 2 1 3 2 3

4 2
1 2 1 3 2 3

3 1 2 2 1 3 1 2 3

1 2 1 3 2 3

2
1 2 1 3 2 3

2
1 2 1 3 2 3

2 2 2

2 2 2

4 4 4

8 8 8

4 4 4

2 4 4 4

2 4 4 4

t t t t t t t t t

A t t t t t t

A A t t A t t A t t

t t t t t t t t t

t t t t t t

A t t t t t t

A A A t t A t t A t t









     

   

   

  
  

   

   

 (332) 
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Using the relationships (332) we can write 

    4 2 2
3 1 2 2 1 3 1 2 3 1 2 1 3 2 3

2 8 8 8 4A A A t t t t t t t t t t t t t t t           (333) 

and re-arranging equation (333) gives another quartic equation in   

       24 2
1 2 3 1 2 3 1 2 3 1 2 1 3 2 32 8 4 0t t t t t t t t t t t t t t t              (334) 

Comparing the coefficients of 2  and  , and the constant terms in equations (329) and 

(334) gives the following relationships 

 

2

1 2 3

2 2

1 2 3

2 2

1 2 1 3 2 3

4 2

64

16 8

z
t t t

z
t t t

z
t t t t t t





 

   



   

 

Now 1 2 3, ,t t t  are the roots of the cubic equation 3 2
1 2 3 0t a t a t a     and the coefficients 

are  1 1 2 3 2 1 2 1 3 2 3 3 1 2 3, ,a t t t a t t t t t t a t t t          respectively.  Using the sums and 

products in equation (331) gives a solution for   in terms of a single real-root 1t  as 

 
2

1 1
14 2 4

z az
t t

t


       (335) 

Substituting expressions for 1 2 3, ,a a a  into the general cubic equation gives 

 
2 2 2 2 2

3 2 0
2 4 16 8 64

z z z
t t t

                     
 (336) 

A further substitution 

 
2 2

6 12 6
z z

t u
       

 (337) 

enables equation (336) to be reduced to a form 

 34 3u u q   (338) 

with a single real-root 1u  having the solution 

  2 23 3
1

1
1 1

2
u q q q q       (339) 
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where 

 
 

 

2 2 2

32

27
1

2

z
q

z

 




 


 (340) 

Thus having x,y,z (hence p) for a point related to an ellipsoid, tan  is obtained by 

computing the following variables in order:   from equation (330),   from equation (326), 

q from equation (340), 1u  from equation (339), 1t  from equation (337),   from equation 

(335) noting that all square-roots in equation (335) have the same sign as z, and finally 

tan  from equation (328). 
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3 MATLAB FUNCTIONS 

MATLAB® (an acronym for MATrix LABoratory) is a powerful computer program 

designed to perform scientific calculations.  It was originally designed to perform matrix 

mathematics but has evolved into a flexible computing system capable of solving almost 

any technical problem.  MATLAB has its own computer language (often called the 

MATLAB language) that looks like the C computer language, and an extensive suite of 

technical functions.  MATLAB functions can be easily constructed using the MATLAB 

editor and executed from the MATLAB command window.  Results from MATLAB 

functions are easily presented in the command window. 

3.1 ELLIPSOID CONSTANTS 
The MATLAB function ellipsoid_1.m given below, computes constants of an ellipsoid 

given the defining parameters: semi-major axis a and denominator of flattening flat where 

1f flat .  The function is designed to be run from the MATLAB command window with 

output from the function printed in the MATLAB command window. 

 

MATLAB function ellipsoid_1.m 
 
function ellipsoid_1(a,flat) 
% 
% ellipsoid_1(a,flat)  Function takes semi-major axis 'a' of ellipsoid 
%   and reciprocal of flattening 'flat' and computes some geometric  
%   constants of the ellipsoid.  Note that the flattening f = 1/flat. 
%   e.g., ellipsoid_1(6378137,298.257222101) will return the constants of 
%         the GRS80 ellipsoid 
  
%========================================================================== 
% Function:  ellipsoid_1 
% 
% Useage:    ellipsoid_1(a,flat); 
% 
% Author: 
%  Rod Deakin,  
%  School of Mathematical and Geospatial Sciences, RMIT University, 
%  GPO Box 2476V, MELBOURNE VIC 3001 
%  AUSTRALIA 
%  email: rod.deakin@rmit.edu.au 
% 
% Date: 
%  Version 1.0  31 January 2008 
%  Version 1.1  25 April   2012 
% 
% Remarks:   
%  Function takes semi-major axis 'a' of ellipsoid and reciprocal of  
%  flattening 'flat' and computes some geometric constants of the  
%  ellipsoid.  Note that the flattening f = 1/flat. 
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% 
% References: 
%  [1] Deakin, R.E. and Hunter, M.N., 2008, 'Geometric Geodesy', School of  
%         Mathematical and Geospatial Sciences, RMIT University, February 
%         2008. 
% 
% Variables: 
%  A         - surface area of ellipsoid 
%  a         - semi-major axis of ellipsoid 
%  b         - semi-minor axis of ellipsoid 
%  c         - polar radius of curvature 
%  e         - 1st eccentricity of ellipsoid 
%  e2        - 1st eccentricity squared 
%  e4,e6,e8, 
%  e10,e12   - powers of e2 
%  ep2       - 2nd eccentricity squared 
%  ep4,ep6,ep8, 
%  ep10,ep12 - powers of ep2 
%  f         - flattening of ellipsoid 
%  f2,f3,f4, 
%  f5,f6     - powers of flattening 
%  flat      - reciprocal of flattening f = 1/flat 
%  n         - ellipsoid constant 
%  n2,n3,n4, 
%  n5,n6     - powers of n 
%  Q         - Quadrant distance of ellipsoid 
%  Ra        - radius of sphere having same surface area as ellipsoid 
%  Rm        - radius of sphere having mean of ellipsoid axes 
%  Rv        - radius of sphere having same volume as ellipsoid 
%  Rq        - radius of sphere having same quadrant distance as ellipsoid 
%  V         - volume of ellipsoid 
%========================================================================= 
  
% compute flattening f and powers of f 
f = 1/flat; 
f2 = f*f; 
f3 = f2*f; 
f4 = f3*f; 
f5 = f4*f; 
f6 = f5*f; 
  
% compute semi-minor axis b and polar radius of curvature c 
b = a*(1-f); 
c = a/(1-f); 
  
% compute eccentricity squared e2, eccentricity e and powers of e2 
e2  = f*(2-f); 
e   = sqrt(e2); 
e4  = e2*e2; 
e6  = e4*e2; 
e8  = e6*e2; 
e10 = e8*e2; 
e12 = e10*e2; 
  
% compute 2nd eccentricity squared (e_primed squared) and powers of ep2 
ep2  = e2/(1-e2); 
ep4  = ep2*ep2; 
ep6  = ep4*ep2; 
ep8  = ep6*ep2; 
ep10 = ep8*ep2; 
ep12 = ep10*ep2; 
  
% compute n 
n = f/(2-f); 
n2 = n*n; 
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n3 = n2*n; 
n4 = n3*n; 
n5 = n4*n; 
n6 = n5*n; 
  
% compute quadrant distance Q 
Q = a*(1-n)*(1-n2)*(1 + 9/4*n2 + 225/64*n4)*pi/2; 
  
% surface area of ellipsoid 
A = 2*pi*a^2*(1 + (1-e2)/(2*sqrt(e2))*log((1+e)/(1-e))); 
  
% volume of ellipsoid 
V = 4*pi/3*a*a*b; 
  
% compute radii of equivalent spheres 
Rm = (2*a + b)/3; 
Ra = sqrt(a^2/2*(1 + (1-e2)/(2*e)*log((1+e)/(1-e)))); 
Rv = (a*a*b)^(1/3); 
Rq = a*(1-n)*(1-n2)*(1 + 9/4*n2 + 225/64*n4); 
  
% print values to screen 
fprintf('\n\nEllipsoid Constants:'); 
fprintf('\n==================='); 
fprintf('\n          semi-major axis     a = %11.3f metres',a); 
fprintf('\n          semi-minor axis     b = %11.3f metres',b); 
fprintf('\npolar radius of curvature     c = %11.3f metres',c); 
fprintf('\n     eccentricity squared    e2 = %14.9e',e2); 
fprintf('\n 2nd eccentricity squared   ep2 = %14.9e',ep2); 
fprintf('\n               flattening     f = %14.9e',f); 
fprintf('\ndenominator of flattening  flat = %13.9f',flat); 
fprintf('\n                              n = %14.9e',n); 
fprintf('\n        quadrant distance     Q = %12.3f metres',Q); 
fprintf('\n             surface area     A = %.8e square-metres',A); 
fprintf('\n                   volume     V = %.8e cubic-metres',V); 
fprintf('\n\nradii of equivalent spheres'); 
fprintf('\n              mean radius    Rm = %12.3f metre',Rm); 
fprintf('\n                     area    Ra = %12.3f metres',Ra); 
fprintf('\n                   volume    Rv = %12.3f metres',Rv); 
fprintf('\n                 quadrant    Rq = %12.3f metres',Rq); 
fprintf('\n\npowers of constants'); 
fprintf('\n e2 = %14.9e      ep2 = %14.9e',e2,ep2); 
fprintf('\n e4 = %14.9e      ep4 = %14.9e',e4,ep4); 
fprintf('\n e6 = %14.9e      ep6 = %14.9e',e6,ep6); 
fprintf('\n e8 = %14.9e      ep8 = %14.9e',e8,ep8); 
fprintf('\ne10 = %14.9e     ep10 = %14.9e',e10,ep10); 
fprintf('\ne12 = %14.9e     ep12 = %14.9e',e12,ep12); 
fprintf('\n\n  f = %14.9e        n = %14.9e',f,n); 
fprintf('\n f2 = %14.9e       n2 = %14.9e',f2,n2); 
fprintf('\n f3 = %14.9e       n3 = %14.9e',f3,n3); 
fprintf('\n f4 = %14.9e       n4 = %14.9e',f4,n4); 
fprintf('\n f5 = %14.9e       n5 = %14.9e',f5,n5); 
fprintf('\n f6 = %14.9e       n6 = %14.9e',f6,n6); 
fprintf('\n\n'); 
 
 

Help message for MATLAB function ellipsoid_1.m 
 
>> help ellipsoid_1 
  
  ellipsoid_1(a,flat)  Function takes semi-major axis 'a' of ellipsoid 
    and reciprocal of flattening 'flat' and computes some geometric  
    constants of the ellipsoid.  Note that the flattening f = 1/flat. 
    e.g., ellipsoid_1(6378137,298.257222101) will return the constants of 
          the GRS80 ellipsoid 
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Output from MATLAB function ellipsoid_1.m 
 
>> ellipsoid_1(6378137,298.257222101); 
 
Ellipsoid Constants: 
=================== 
          semi-major axis     a = 6378137.000 metres 
          semi-minor axis     b = 6356752.314 metres 
polar radius of curvature     c = 6399593.626 metres 
     eccentricity squared    e2 = 6.694380023e-003 
 2nd eccentricity squared   ep2 = 6.739496775e-003 
               flattening     f = 3.352810681e-003 
denominator of flattening  flat = 298.257222101 
                              n = 1.679220395e-003 
        quadrant distance     Q = 10001965.729 metres 
             surface area     A = 5.10065622e+014 square-metres 
                   volume     V = 1.08320732e+021 cubic-metres 
 
radii of equivalent spheres 
              mean radius    Rm =  6371008.771 metre 
                     area    Ra =  6371007.181 metres 
                   volume    Rv =  6371000.790 metres 
                 quadrant    Rq =  6367449.146 metres 
 
powers of constants 
 e2 = 6.694380023e-003      ep2 = 6.739496775e-003 
 e4 = 4.481472389e-005      ep4 = 4.542081679e-005 
 e6 = 3.000067923e-007      ep6 = 3.061134483e-007 
 e8 = 2.008359477e-009      ep8 = 2.063050598e-009 
e10 = 1.344472156e-011     ep10 = 1.390392285e-011 
e12 = 9.000407545e-014     ep12 = 9.370544321e-014 
 
  f = 3.352810681e-003        n = 1.679220395e-003 
 f2 = 1.124133946e-005       n2 = 2.819781134e-006 
 f3 = 3.769008303e-008       n3 = 4.735033988e-009 
 f4 = 1.263677129e-010       n4 = 7.951165642e-012 
 f5 = 4.236870177e-013       n5 = 1.335175951e-014 
 f6 = 1.420542358e-015       n6 = 2.242054687e-017 
 
>> 

3.2 MERIDIAN DISTANCE 
Three MATLAB functions are given below.  The first function, mdist.m, uses Helmert's 

formula [equation (224)] to compute the meridian distance m given the ellipsoid 

parameters a (semi-major axis of ellipsoid)and flat (the denominator of the flattening f ) 

and the latitude lat in the form ddd.mmss, where a latitude of 37 48 33.1234    would be 

input into the function as 37.48331234 .  The function is designed to be run from the 

MATLAB command window with output from the function printed in the MATLAB 

command window. 

The second function, latitude.m, computes the latitude   given the meridian distance m 

and the ellipsoid parameters a (semi-major axis of ellipsoid), flat (the denominator of the 

flattening f ).  The function uses equation (242), the series formula developed by reversing 
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Helmert's formula, and is designed to be run from the MATLAB command window with 

output from the function printed in the MATLAB command window. 

The third function, latitude2.m, computes the latitude   given the meridian distance m 

and the ellipsoid parameters a (semi-major axis of ellipsoid), flat (the denominator of the 

flattening f ).  The function uses the Newton-Raphson iterative scheme to compute the 

latitude from Helmert's formula [equation (224)] and is designed to be run from the 

MATLAB command window with output from the function printed in the MATLAB 

command window. 

 

MATLAB function mdist.m 
% 
% 
function mdist(a,flat,lat) 
% 
% MDIST(A,FLAT,LAT)  Function computes the meridian distance on an  
%  ellipsoid defined by semi-major axis (A) and denominator of flattening 
%  (FLAT) from the equator to a point having latitude (LAT) in d.mmss format. 
%  For example: mdist(6378137, 298.257222101, -37.48331234) will compute the 
%  meridian distance for a point having latitude -37 degrees 48 minutes  
%  33.1234 seconds on the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101) 
 
%-------------------------------------------------------------------------- 
% Function:  mdist() 
% 
% Usage:     mdist(a,flat,lat) 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  22 March 2006 
% 
% Purpose:   Function mdist(a,f,lat) will compute the meridian distance on 
%            an ellipsoid defined by semi-major axis a and flat, the  
%            denominator of the flattening f where f = 1/flat.  Latitude is 
%            given in d.mmss format. 
% 
% Functions required:   
%            decdeg = dms2deg(dms) 
%            [D,M,S] = DMS(DecDeg) 
%         
% Variables: a      - semi-major axis of spheroid 
%            b0,b1,b2, - coefficients 
%            d2r    - degree to radian conversion factor 57.29577951... 
%            n,n2,n3, etc - powers of n 
%            f      - f = 1/flat is the flattening of ellipsoid 
%            flat   - denominator of flattening of ellipsoid 
% 
% Remarks:   Helmert's formula for meridian distance is given in 
%            Lauf, G.B., 1983, Geodesy and Map Projections,  
%            TAFE Publications Unit, Collingwood, p. 36, eq'n 3.58. 
%            A derivation can also be found in Deakin, R.E., Meridian  
%            Distance, Lecture Notes, School of Mathematical and  
%            Geospatial Sciences, RMIT University, March 2006. 
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%-------------------------------------------------------------------------- 
 
% degree to radian conversion factor 
d2r = 180/pi; 
 
% compute flattening f and ellipsoid constant n 
f = 1/flat; 
n = f/(2-f); 
 
% powers n 
n2 = n*n; 
n3 = n2*n; 
n4 = n3*n; 
 
% coefficients in Helmert's series expansion for meridian distance 
b0  = 1+(9/4)*n2+(225/64)*n4; 
b2  = (3/2)*n+(45/16)*n3; 
b4  = (1/2)*((15/8)*n2+(105/32)*n4); 
b6  = (1/3)*((35/16)*n3); 
b8  = (1/4)*((315/128)*n4); 
 
% compute meridian distance 
x = abs(dms2deg(lat)/d2r); 
term1 = b0*x; 
term2 = b2*sin(2*x); 
term3 = b4*sin(4*x); 
term4 = b6*sin(6*x); 
term5 = b8*sin(8*x); 
 
mdist = a*(1-n)*(1-n2)*(term1-term2+term3-term4+term5); 
 
% print result to screen 
fprintf('\n a  = %12.4f',a); 
fprintf('\n f  = 1/%13.9f',flat); 
[D,M,S] = DMS(x*d2r); 
if D == 0 && lat < 0 
    fprintf('\nLatitude =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude      = %4d %2d %9.6f (D M S)',D,M,S); 
end     
    fprintf('\nMeridian dist = %15.6f',mdist); 
 
fprintf('\n\n'); 
 
 
 

Help message for MATLAB function mdist.m 
 
>> help mdist 
 
  
  MDIST(A,FLAT,LAT)  Function computes the meridian distance on an  
   ellipsoid defined by semi-major axis (A) and denominator of flattening 
   (FLAT) from the equator to a point having latitude (LAT) in d.mmss format. 
   For example: mdist(6378137, 298.257222101, -37.48331234) will compute the 
   meridian distance for a point having latitude -37 degrees 48 minutes  
   33.1234 seconds on the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101) 
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Output from MATLAB function mdist.m 
 
 
>> mdist(6378137,298.257222101,-37.48331234) 
 
 a  = 6378137.0000 
 f  = 1/298.257222101 
Latitude      =   37 48 33.123400 (D M S) 
Meridian dist =  4186320.340377 
 
>> 

 

MATLAB function latitude.m 

 
function latitude(a,flat,mdist) 
% 
% LATITUDE(A,FLAT,MDIST)  Function computes the latitude of a point 
%   on an ellipsoid defined by semi-major axis (A) and denominator of 
%   flattening (FLAT) given the meridian distance (MDIST) from the  
%   equator to the point. 
%   For example: latitude(6378137,298.257222101,5540847.041561) should 
%   return a latitude of 50 degrees 00 minutes 00 seconds for a meridian 
%   distance of 5540847.041561m on the GRS80 ellipsoid (a = 6378137, f = 
%   1/298.257222101) 
 
%-------------------------------------------------------------------------- 
% Function:  latitude() 
% 
% Usage:     latitude(a,f,mdist) 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  23 March 2006 
% 
% Functions required:   
%            [D,M,S] = DMS(DecDeg) 
%         
% Purpose:    
%    Function latitude() will compute the latitude of a point on on an 
%    ellipsoid defined by semi-major axis (a) and denominator of  
%    flattening (flat) given meridian distance (m_dist) from the  
%    equator to the point. 
% 
% Variables: 
%    a       - semi-major axis of spheroid 
%    d2r     - degree to radian conversion factor 57.29577951... 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    lat     - latitude (degrees) 
%    g       - mean length of an arc of one radian of the meridian 
%    mdist   - meridian distance 
%    n       - eta, n = f/(2-f) 
%    n2,n4,  - powers of eta 
%    s       - sigma s = m_dist/g 
%    s2,s3,  - powers of sigma 
% 
% Remarks:    
%    For an ellipsoid defined by semi-major axis (a) and flattening (f) the 
%    meridian distance (mdist) can be computed by series expansion 
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%    formulae (see function mdist.m).  The reverse operation, given a 
%    meridian distance on a defined ellipsoid to calculate the latitude, 
%    can be achieved by series formulae published in THE AUSTRALIAN GEODETIC  
%    DATUM Technical Manual Special Publication 10, National Mapping Council  
%    of Australia, 1986 (section 4.4, page 24-25).  The development of these 
%    formulae are given in Lauf, G.B., 1983, GEODESY AND MAP PROJECTIONS, 
%    Tafe Publications, Vic., pp.35-38. 
%    This function is generally used to compute the "footpoint latitude"  
%    which is the latitude for which the meridian distance is equal to the 
%    y-coordinate divided by the central meridian scale factor, i.e.,  
%    latitude for m_dist = y/k0. 
%-------------------------------------------------------------------------- 
 
% degree to radian conversion factor 
d2r = 180/pi; 
 
% calculate flatteninf f and ellipsoid constant n and powers of n 
f  = 1/flat; 
n  = f/(2.0-f); 
n2 = n*n; 
n3 = n2*n; 
n4 = n3*n; 
 
% calculate the mean length an arc of one radian on the meridian 
g = a*(1-n)*(1-n2)*(1+9/4*n2+225/64*n4); 
 
% calculate sigma (s) and powers of sigma 
s  = mdist/g; 
s2 = 2.0*s; 
s4 = 4.0*s; 
s6 = 6.0*s; 
s8 = 8.0*s; 
 
% calculate the latitude (in radians) 
lat = s + (3*n/2 - 27/32*n3)*sin(s2)... 
        + (21/16*n2 - 55/32*n4)*sin(s4)... 
        + (151/96*n3)*sin(s6)... 
        + (1097/512*n4)*sin(s8); 
 
% convert latitude to degrees 
lat = lat*d2r; 
 
% print result to screen 
fprintf('\n a  = %12.4f',a); 
fprintf('\n f  = 1/%13.9f',flat); 
[D,M,S] = DMS(lat); 
if D == 0 && lat < 0 
    fprintf('\nLatitude =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude      = %4d %2d %9.6f (D M S)',D,M,S); 
end     
    fprintf('\nMeridian dist = %15.6f',mdist); 
 
fprintf('\n\n'); 
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Help message for MATLAB function latitude.m 
 
>> help latitude 
 
  
  LATITUDE(A,FLAT,MDIST)  Function computes the latitude of a point 
    on an ellipsoid defined by semi-major axis (A) and denominator of 
    flattening (FLAT) given the meridian distance (MDIST) from the  
    equator to the point. 
    For example: latitude(6378137,298.257222101,5540847.041561) should 
    return a latitude of 50 degrees 00 minutes 00 seconds for a meridian 
    distance of 5540847.041561m on the GRS80 ellipsoid (a = 6378137, f = 
    1/298.257222101) 
 
 
 

Output from MATLAB function latitude.m 
 
>> latitude(6378137,298.257222101,4186320.340377) 
 
 a  = 6378137.0000 
 f  = 1/298.257222101 
Latitude      =   37 48 33.123400 (D M S) 
Meridian dist =  4186320.340377 
 
>> 
 

 

MATLAB function latitude2.m 

 
function latitude2(a,flat,mdist) 
% 
% LATITUDE2(A,FLAT,MDIST)  Function computes the latitude of a point 
%   on an ellipsoid defined by semi-major axis (A) and denominator of 
%   flattening (FLAT) given the meridian distance (MDIST) from the  
%   equator to the point. 
%   For example: latitude(6378137,298.257222101,5540847.041561) should 
%   return a latitude of 50 degrees 00 minutes 00 seconds for a meridian 
%   distance of 5540847.041561m on the GRS80 ellipsoid (a = 6378137, f = 
%   1/298.257222101) 
 
%-------------------------------------------------------------------------- 
% Function:  latitude2() 
% 
% Usage:     latitude2(a,f,mdist) 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  23 March 2006 
% 
% Functions required:   
%            [D,M,S] = DMS(DecDeg) 
%         
% Purpose:    
%    Function latitude2() will compute the latitude of a point on on an 
%    ellipsoid defined by semi-major axis (a) and denominator of  
%    flattening (flat) given meridian distance (mdist) from the  
%    equator to the point. 
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% 
% Variables: 
%    a       - semi-major axis of spheroid 
%    b0,b1,b2,... coefficients in Helmert's formula 
%    corrn   - correction term in Newton-Raphson iteration 
%    count   - iteration number 
%    d2r     - degree to radian conversion factor 57.29577951... 
%    F       - a function of latitude (Helmert's formula) 
%    Fdash   - the derivative of F 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    lat     - latitude 
%    mdist   - meridian distance 
%    n       - eta, n = f/(2-f) 
%    n2,n4,  - powers of eta 
% 
% Remarks:    
%    For an ellipsoid defined by semi-major axis (a) and flattening (f) the 
%    meridian distance (mdist) can be computed by series expansion 
%    formulae (see function mdist.m).  The reverse operation, given a 
%    meridian distance on a defined ellipsoid to calculate the latitude, 
%    can be achieved by using Newton's Iterative scheme. 
%-------------------------------------------------------------------------- 
 
% degree to radian conversion factor 
d2r = 180/pi; 
 
% calculate flattening f and ellipsoid constant n and powers of n 
f  = 1/flat; 
n  = f/(2.0-f); 
n2 = n*n; 
n3 = n2*n; 
n4 = n3*n; 
 
% coefficients in Helmert's series expansion for meridian distance 
b0  = 1+(9/4)*n2+(225/64)*n4; 
b2  = (3/2)*n+(45/16)*n3; 
b4  = (1/2)*((15/8)*n2+(105/32)*n4); 
b6  = (1/3)*((35/16)*n3); 
b8  = (1/4)*((315/128)*n4); 
 
% set the first approximation of the latitude and then Newton's iterative 
% scheme where F is the function of latitude and Fdash is the derivative of 
% the function F 
lat   = mdist/a; 
corrn = 1; 
count = 0; 
while (abs(corrn)>1e-10) 
    F = a*(1-n)*(1-n2)*(b0*lat... 
                        - b2*sin(2*lat)... 
                        + b4*sin(4*lat)... 
                        - b6*sin(6*lat)... 
                        + b8*sin(8*lat)) - mdist; 
    Fdash = a*(1-n)*(1-n2)*(b0... 
                            - 2*b2*cos(2*lat)... 
                            + 4*b4*cos(4*lat)... 
                            - 6*b6*cos(6*lat)... 
                            + 8*b8*cos(8*lat)); 
    corrn  = -F/Fdash; 
    lat = lat + corrn; 
    count = count+1; 
end     
 
% convert latitude to degrees 
lat = lat*d2r; 
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% print result to screen 
fprintf('\n a  = %12.4f',a); 
fprintf('\n f  = 1/%13.9f',flat); 
[D,M,S] = DMS(lat); 
if D == 0 && lat < 0 
    fprintf('\nLatitude =   -0 %2d %9.6f (D M S)',M,S); 
else     
    fprintf('\nLatitude      = %4d %2d %9.6f (D M S)',D,M,S); 
end     
fprintf('\nMeridian dist = %15.6f',mdist); 
fprintf('\niterations    = %d',count); 
 
fprintf('\n\n'); 
 
 
 

Help message for MATLAB function latitude2.m 
 
>> help latitude2 
 
  
  LATITUDE2(A,FLAT,MDIST)  Function computes the latitude of a point 
    on an ellipsoid defined by semi-major axis (A) and denominator of 
    flattening (FLAT) given the meridian distance (MDIST) from the  
    equator to the point. 
    For example: latitude(6378137,298.257222101,5540847.041561) should 
    return a latitude of 50 degrees 00 minutes 00 seconds for a meridian 
    distance of 5540847.041561m on the GRS80 ellipsoid (a = 6378137, f = 
    1/298.257222101) 
 
 
 

Output from MATLAB function latitude2.m 
 
>> latitude2(6378137,298.257222101,4186320.340377) 
 
 a  = 6378137.0000 
 f  = 1/298.257222101 
Latitude      =   37 48 33.123400 (D M S) 
Meridian dist =  4186320.340377 
iterations    = 3 
 
>> 
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MATLAB functions DMS.m and dms2deg.m 

 

MATLAB functions mdist.m, latitude.m and latitude2.m call functions DMS.m and 

dms2deg.m to convert decimal degrees to degrees, minutes and seconds (for printing) and 

ddd.mmss format to decimal degrees.  These functions are shown below. 

 
 
function [D,M,S] = DMS(DecDeg) 
% [D,M,S] = DMS(DecDeg)  This function takes an angle in decimal degrees and returns 
%   Degrees, Minutes and Seconds 
 
val = abs(DecDeg); 
D = fix(val); 
M = fix((val-D)*60); 
S = (val-D-M/60)*3600; 
if(DecDeg<0) 
  D = -D; 
end 
return 
 
 
function DecDeg=dms2deg(DMS) 
% DMS2DEG 
%  Function to convert from DDD.MMSS format to decimal degrees 
 
x = abs(DMS); 
D = fix(x); 
x = (x-D)*100; 
M = fix(x); 
S = (x-M)*100; 
DecDeg = D + M/60 + S/3600; 
if(DMS<0) 
  DecDeg = -DecDeg; 
end 
return 
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3.3 CARTESIAN TO GEODETIC TRANSFORMATION 
The MATLAB function Geo2Cart.m given below, computes Cartesian coordinates x,y,z of 

a point related to an ellipsoid defined by semi-major axis a and denominator of flattening 

flat given geodetic coordinates   (lat),   (lon) and h.    and   are assumed to be in 

radians and the function returns the x,y,z coordinates in a vector. 

 

MATLAB function Geo2Cart.m 

 
function [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
% 
% [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
%   Function computes the Cartesian coordinates X,Y,Z of a point 
%   related to an ellipsoid defined by semi-major axis (a) and the 
%   denominator of the flattening (flat) given geodetic coordinates  
%   latitude (lat), longitude (lon) and ellipsoidal height (h).   
%   Latitude and longitude are assumed to be in radians. 
  
%-------------------------------------------------------------------------- 
% Function:  Geo2Cart() 
% 
% Usage:     [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0   6 April    2006 
%            Version  1.0  20 August   2007 
%            Version  1.1   3 March    2008 
% 
% Functions required:   
%    radii() 
%         
% Purpose:    
%    Function Geo2Cart() will compute Cartesian coordinates X,Y,Z 
%    given geodetic coordinates latitude, longitude (both in radians) and  
%    height of a  point related to an ellipsoid defined by semi-major axis  
%    (a) and denominator of flattening (flat).   
% 
% Variables: 
%    a       - semi-major axis of ellipsoid 
%    e2      - 1st-eccentricity squared 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    h       - height above ellipsoid 
%    lat     - latitude (radians) 
%    lon     - longitude (radians) 
%    p       - perpendicular distance from minor axis of ellipsoid 
%    rm      - radius of curvature of meridian section of ellipsoid 
%    rp      - radius of curvature of prime vertical section of ellipsoid 
% 
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% References: 
% [1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY - PART A,  
%       School of Mathematical and Geospatial Sciences, RMIT University,  
%       Melbourne, AUSTRALIA, March 2008. 
% [2] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian  
%       coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The 
%       Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999. 
%-------------------------------------------------------------------------- 
  
% calculate flattening f and ellipsoid constant e2 
f   = 1/flat; 
e2  = f*(2-f); 
  
% compute radii of curvature for the latitude 
[rm,rp] = radii(a,flat,lat); 
  
% compute Cartesian coordinates X,Y,Z 
p = (rp+h)*cos(lat); 
X = p*cos(lon); 
Y = p*sin(lon); 
Z = (rp*(1-e2)+h)*sin(lat); 
 
 
 

Help message for MATLAB function Geo2Cart.m 
 
>> help Geo2Cart 
  
  [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h) 
    Function computes the Cartesian coordinates X,Y,Z of a point 
    related to an ellipsoid defined by semi-major axis (a) and the 
    denominator of the flattening (flat) given geodetic coordinates  
    latitude (lat), longitude (lon) and ellipsoidal height (h).   
    Latitude and longitude are assumed to be in radians. 
 
>> 
 
 

Operation of MATLAB function Geo2Cart.m 
 
>> d2r = 180/pi; 
>> a = 6378137; 
>> flat = 298.257222101; 
>> lat = -50/d2r; 
>> lon = -150/d2r; 
>> h = 10000; 
>> [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h); 
>> [X,Y,Z]' 
 
ans = 
 
         -3563081.36230554 
         -2057145.98367164 
         -4870449.48202417 
 
>> 
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3.4 GEODETIC TO CARTESIAN TRANSFORMATION 
Five MATLAB functions are given below.  All of the functions compute   (lat),   (lon) 

and h of a point related to an ellipsoid defined by semi-major axis (a) and denominator of 

flattening (flat) given Cartesian coordinates x,y,z.  All of the functions return , ,h   as a 

vector (with   and   in radians) as well as printing output to the MATLAB command 

window. 

The first function: Cart2Geo_Substitution.m is an iterative solution using the method of 

Successive Substitution.  The second function: Cart2Geo_Newton.m is an iterative 

solution using Newton-Raphson iteration.  The third function: Cart2Geo_Bowring.m is an 

iterative solution using Bowring's method with a single iteration.  The fourth function: 

Cart2Geo_Lin.m is an iterative solution using Lin and Wang's method and the fifth 

function: Cart2Geo_Paul.m is a direct solution using Paul's method. 

In the the output from each of these functions shown below, x,y,z Cartesian coordinates 

are first computed for a given , ,h   and ellipsoid using Geo2Cart.m and then these x,y,z 

coordinates are used in the function to compute , ,h  . 

 

MATLAB function Cart2Geo_Substitution.m 
 
function [lat,lon,h] = Cart2Geo_Substitution(a,flat,X,Y,Z) 
% 
% [lat,lon,h] = Cart2Geo_Substitution(a,flat,X,Y,Z) 
%   Function computes the latitude (lat), longitude (lon) and height (h) 
%   of a point related to an ellipsoid defined by semi-major axis (a) 
%   and denominator of flattening (flat) given Cartesian coordinates 
%   X,Y,Z.  Latitude and longitude are returned as radians.  This function 
%   uses Successive Substitution for converting X,Y,Z to lat,lon,height. 
  
%-------------------------------------------------------------------------- 
% Function:  Cart2Geo_Substitution() 
% 
% Usage:     [lat,lon,h] = Cart2Geo_Substitution(a,flat,X,Y,Z); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0   9 February 2008 
% 
% Functions required:   
%    radii() 
%         
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% Purpose:    
%    Function Cart2Geo_Substitution() will compute latitude, longitude  
%    (both in radians) and height of a  point related to an ellipsoid  
%    defined by semi-major axis (a) and denominator of flattening (flat)  
%    given Cartesian coordinates X,Y,Z. 
% 
% Variables: 
%    a       - semi-major axis of ellipsoid 
%    count   - integer counter for number of iterations 
%    corrn   - correction to approximate value 
%    d2r     - degree to radian conversion factor = 57.29577951... 
%    e2      - 1st eccentricity squared 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    h       - height above ellipsoid 
%    lat     - latitude (radians) 
%    lon     - longitude (radians) 
%    p       - perpendicular distance from minor-axis of ellipsoid 
%    rm      - radius of curvature of meridian section of ellipsoid 
%    rp      - radius of curvature of prime vertical section of ellipsoid 
% 
% Remarks:    
%    This function uses Successive Substitution, see Refences [1] and [2]. 
% 
% References: 
% [1] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian  
%       coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The 
%       Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999. 
% [2] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY - PART A,  
%       School of Mathematical and Geospatial Sciences, RMIT University,  
%       Melbourne, AUSTRALIA, March 2008. 
%-------------------------------------------------------------------------- 
  
% Set degree to radian conversion factor 
d2r = 180/pi; 
  
% calculate flattening f and ellipsoid constant e2 
f   = 1/flat; 
e2  = f*(2-f); 
  
% compute 1st approximation of geodetic latitude for the Simple Iteration 
p   = sqrt(X*X + Y*Y); 
lat = atan(Z/(p*(1-e2))); 
corrn = 1; 
count = 0; 
while (abs(corrn)>1e-10) 
%   Compute radii of curvature 
    [rm,rp] = radii(a,flat,lat); 
%   Compute new approximation of latitude     
    new_lat = atan((Z+rp*e2*sin(lat))/p); 
    corrn = lat-new_lat; 
    count = count+1; 
    lat = new_lat; 
end; 
  
% compute radii of curvature for the latitude 
[rm,rp] = radii(a,flat,lat); 
  
% compute longitude and height 
lon = atan2(Y,X); 
h   = p/cos(lat) - rp; 
  
% Print results to screen 
fprintf('\n\nCartesian to Geographic - Simple Iteration'); 
fprintf('\n=========================================='); 
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fprintf('\nEllipsoid:'); 
fprintf('\nsemi-major axis a = %13.3f',a); 
fprintf('\nflattening      f = 1/%13.9f',flat); 
fprintf('\nCartesian coordinates:'); 
fprintf('\nX = %13.3f',X); 
fprintf('\nY = %13.3f',Y); 
fprintf('\nZ = %13.3f',Z); 
fprintf('\nGeodetic coordinates:'); 
[D,M,S] = DMS(lat*d2r); 
if D == 0 && lat < 0 
    fprintf('\nLatitude  =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nLatitude  = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
[D,M,S] = DMS(lon*d2r); 
if D == 0 && lon < 0 
    fprintf('\nLongitude =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nLongitude = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
fprintf('\nHeight    = %13.3f',h); 
fprintf('\nIterations    = %3d',count); 
fprintf('\n\n'); 
 
 
 

Help message for MATLAB function Cart2Geo_Substitution.m 
 
>> help Cart2Geo_Substitution 
  
  [lat,lon,h] = Cart2Geo_Substitution(a,flat,X,Y,Z) 
    Function computes the latitude (lat), longitude (lon) and height (h) 
    of a point related to an ellipsoid defined by semi-major axis (a) 
    and denominator of flattening (flat) given Cartesian coordinates 
    X,Y,Z.  Latitude and longitude are returned as radians.  This function 
    uses Successive Substitution for converting X,Y,Z to lat,lon,height. 
 
>> 
 
 

Output from MATLAB function Cart2Geo_Substitution.m 
 
 
>> d2r = 180/pi; 
>> a = 6378137; 
>> flat = 298.257222101; 
>> lat = -50/d2r; 
>> lon = -150/d2r; 
>> h = 10000; 
>> [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h); 
>> [X,Y,Z]' 
 
ans = 
 
         -3563081.36230554 
         -2057145.98367164 
         -4870449.48202417 
 
>> [lat,lon,h] = Cart2Geo_Substitution(a,flat,X,Y,Z); 
 
 
Cartesian to Geographic - Simple Iteration 
========================================== 
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Ellipsoid: 
semi-major axis a =   6378137.000 
flattening      f = 1/298.257222101 
Cartesian coordinates: 
X =  -3563081.362 
Y =  -2057145.984 
Z =  -4870449.482 
Geodetic coordinates: 
Latitude  =  -50  0  0.000000 (D M S) 
Longitude = -150  0  0.000000 (D M S) 
Height    =     10000.000 
Iterations    =   3 
 
>> 
 

 

 

MATLAB function Cart2Geo_Newton.m 
 
function [lat,lon,h] = Cart2Geo_Newton(a,flat,X,Y,Z) 
% 
% [lat,lon,h] = Cart2Geo_Newton(a,flat,X,Y,Z) 
%   Function computes the latitude (lat), longitude (lon) and height (h) 
%   of a point related to an ellipsoid defined by semi-major axis (a) 
%   and denominator of flattening (flat) given Cartesian coordinates 
%   X,Y,Z.  Latitude and longitude are returned as radians.  This function 
%   uses Newton-Raphson Iteration for converting X,Y,Z to lat,lon,height. 
  
%-------------------------------------------------------------------------- 
% Function:  Cart2Geo_Newton() 
% 
% Usage:     [lat,lon,h] = Cart2Geo_Newton(a,flat,X,Y,Z); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0   3 March 2008 
% 
% Functions required:   
%    radii() 
%         
% Purpose:    
%    Function Cart2Geo_Newton() will compute latitude, longitude (both in  
%    radians) and height of a  point related to an ellipsoid defined by  
%    semi-major axis (a) and denominator of flattening (flat) given  
%    Cartesian coordinates X,Y,Z. 
% 
% Variables: 
%    a       - semi-major axis of ellipsoid 
%    c       - cosine(lat) 
%    count   - integer counter for number of iterations 
%    corrn   - correction to approximate value 
%    d2r     - degree to radian conversion factor = 57.29577951... 
%    e2      - 1st eccentricity squared 
%    ep2     - 2nd eccentricity squared (ep = e-primed) 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    F       - function 
%    dF      - derivative of function 
%    h       - height above ellipsoid 
%    lat     - latitude (radians) 
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%    lon     - longitude (radians) 
%    p       - perpendicular distance from minor-axis of ellipsoid 
%    rm      - radius of curvature of meridian section of ellipsoid 
%    rp      - radius of curvature of prime vertical section of ellipsoid 
%    s       - sine(lat) 
% 
% Remarks:    
%    This function uses Newton-Raphson Iteration, see Refences [1]. 
% 
% References: 
% [1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY - PART A,  
%       School of Mathematical and Geospatial Sciences, RMIT University,  
%       Melbourne, AUSTRALIA, March 2008. 
  
%-------------------------------------------------------------------------- 
  
% Set degree to radian conversion factor 
d2r = 180/pi; 
  
% calculate flattening f and ellipsoid constant e2 
f   = 1/flat; 
e2  = f*(2-f); 
ep2 = e2/(1-e2); 
  
% compute 1st approximation of geodetic latitude for Newton_Raphson 
% Iteration 
p   = sqrt(X*X + Y*Y); 
lat = atan(Z/(p*(1-e2))); 
corrn = 1; 
count = 0; 
while (abs(corrn)>1e-10) 
    % Compute radii of curvature 
    [rm,rp] = radii(a,flat,lat); 
    s = sin(lat); 
    c = cos(lat); 
    %   Compute value of function and its derivative for approximate latitude     
    F  = Z + rp*e2*s - p*s/c; 
    dF = rm*ep2*c - p/c/c;  
    corrn = F/dF; 
    new_lat = lat - corrn; 
    count = count+1; 
    lat = new_lat; 
end; 
  
% compute radii of curvature for the latitude 
[rm,rp] = radii(a,flat,lat); 
  
% compute longitude and height 
lon = atan2(Y,X); 
h   = p/cos(lat) - rp; 
  
% Print results to screen 
fprintf('\n\nCartesian to Geographic - Newton'); 
fprintf('\n================================'); 
fprintf('\nEllipsoid:'); 
fprintf('\nsemi-major axis a = %13.3f',a); 
fprintf('\nflattening      f = 1/%13.9f',flat); 
fprintf('\nCartesian coordinates:'); 
fprintf('\nX = %13.3f',X); 
fprintf('\nY = %13.3f',Y); 
fprintf('\nZ = %13.3f',Z); 
fprintf('\nGeodetic coordinates:'); 
[D,M,S] = DMS(lat*d2r); 
if D == 0 && lat < 0 
    fprintf('\nLatitude  =  -0 %2d %9.6f (D M S)',M,S); 
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else 
    fprintf('\nLatitude  = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
[D,M,S] = DMS(lon*d2r); 
if D == 0 && lon < 0 
    fprintf('\nLongitude =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nLongitude = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
fprintf('\nHeight    = %13.3f',h); 
fprintf('\nIterations    = %3d',count); 
fprintf('\n\n'); 
 
 

Help message for MATLAB function Cart2Geo_Newton.m 
 
>> help Cart2Geo_Newton 
  
  [lat,lon,h] = Cart2Geo_Newton(a,flat,X,Y,Z) 
    Function computes the latitude (lat), longitude (lon) and height (h) 
    of a point related to an ellipsoid defined by semi-major axis (a) 
    and denominator of flattening (flat) given Cartesian coordinates 
    X,Y,Z.  Latitude and longitude are returned as radians.  This function 
    uses Newton-Raphson Iteration for converting X,Y,Z to lat,lon,height. 
 
>> 
 

Output from MATLAB function Cart2Geo_Newton.m 
 
>> d2r = 180/pi; 
>> a = 6378137; 
>> flat = 298.257222101; 
>> lat = -50/d2r; 
>> lon = -150/d2r; 
>> h = 10000; 
>> [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h); 
>> [X,Y,Z]' 
 
ans = 
 
         -3563081.36230554 
         -2057145.98367164 
         -4870449.48202417 
 
>> [lat,lon,h] = Cart2Geo_Newton(a,flat,X,Y,Z); 
 
 
Cartesian to Geographic - Newton 
================================ 
Ellipsoid: 
semi-major axis a =   6378137.000 
flattening      f = 1/298.257222101 
Cartesian coordinates: 
X =  -3563081.362 
Y =  -2057145.984 
Z =  -4870449.482 
Geodetic coordinates: 
Latitude  =  -49 59 60.000000 (D M S) 
Longitude = -150  0  0.000000 (D M S) 
Height    =     10000.000 
Iterations    =   2 
 
>> 
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MATLAB function Cart2Geo_Bowring2.m 
 
function [lat,lon,h] = Cart2Geo_Bowring2(a,flat,X,Y,Z) 
% 
% [lat,lon,h] = Cart2Geo_Bowring2(a,flat,X,Y,Z) 
%   Function computes the latitude (lat), longitude (lon) and height (h) 
%   of a point related to an ellipsoid defined by semi-major axis (a) 
%   and denominator of flattening (flat) given Cartesian coordinates 
%   X,Y,Z.  Latitude and longitude are returned as radians.  This function 
%   uses Bowring's method for converting X,Y,Z to lat,lon,height and  
%   Newton-Raphson iteration. 
  
%-------------------------------------------------------------------------- 
% Function:  Cart2Geo_Bowring2() 
% 
% Usage:     [lat,lon,h] = Cart2Geo_Bowring2(a,flat,X,Y,Z); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0   14 February 2008 
%            Version  1.1   11 June 2012 
% 
% Functions required:   
%    radii() 
%         
% Purpose:    
%    Function Cart2Geo_Bowring2() will compute latitude, longitude (both in  
%    radians) and height of a  point related to an ellipsoid defined by  
%    semi-major axis (a) and denominator of flattening (flat) given  
%    Cartesian coordinates X,Y,Z.  This function uses Newton-Raphson 
%    iteration. 
% 
% Variables: 
%    a       - semi-major axis of ellipsoid 
%    b       - semi-minor axis of ellipsoid 
%    c       - cos(psi) 
%    c3      - cos(psi) cubed 
%    d2r     - degree to radian conversion factor = 57.29577951... 
%    e2      - 1st eccentricity squared 
%    ep2     - 2nd eccentricity squared 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    h       - height above ellipsoid 
%    lat     - latitude (radians) 
%    lon     - longitude (radians) 
%    p       - perpendicular distance from minor-axis of ellipsoid 
%    psi     - parametric latitude (radians) 
%    rm      - radius of curvature of meridian section of ellipsoid 
%    rp      - radius of curvature of prime vertical section of ellipsoid 
%    s       - sin(psi) 
%    s3      - sin(psi) cubed 
% 
% Remarks:    
%    This function uses Bowring's method with Newton-Raphson iteration to  
%    solve for the parametric latitude, see Ref [1]. 
%    Bowring's method is also explained in References [2] and [3]. 
% 
% References: 
% [1] Bowring, B.R., 1976, 'Transformation from spatial to  
%       geographical coordinates', Survey Review, Vol. XXIII, 
%       No. 181, pp. 323-327. 
% [2] Gerdan, G.P. & Deakin, R.E., 1999, 'Transforming Cartesian  
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%       coordinates X,Y,Z to geogrpahical coordinates phi,lambda,h', The 
%       Australian Surveyor, Vol. 44, No. 1, pp. 55-63, June 1999. 
% [3] Deakin, R.E. and Hunter, M.N., 2013, GEOMETRIC GEODESY (Part A),  
%       School of Mathematical and Geospatial Sciences, RMIT University,  
%       Melbourne, AUSTRALIA, Jan 2013. 
  
%-------------------------------------------------------------------------- 
  
% Set degree to radian conversion factor 
d2r = 180/pi; 
  
% calculate flattening f and ellipsoid constants e2, ep2 and b 
f   = 1/flat; 
e2  = f*(2-f); 
ep2 = e2/(1-e2); 
b   = a*(1-f); 
  
% compute 1st approximation of parametric latitude psi 
p   = sqrt(X*X + Y*Y); 
psi = atan(Z/(p*(1-f))); 
  
% compute parametric latitude from Bowring's equation by Newton-Raphson 
% iteration 
corrn = 1; 
count = 0; 
while (abs(corrn)>1e-10) 
    s  = sin(psi); 
    s3 = s*s*s; 
    c  = cos(psi); 
    c2 = c*c; 
    c3 = c2*c; 
    t  = tan(psi); 
    %   Compute value of function and its derivative for approximate latitude     
    F  = p*t - a*e2*c3*t - (1-f)*(Z + b*ep2*s3); 
    dF = p/c2 - a*e2*c;  
    corrn = F/dF; 
    new_psi = psi - corrn; 
    count = count+1; 
    psi = new_psi; 
    % If there are more thna five iterations then break out of while loop. 
    if count>5 
        break; 
    end; 
end; 
  
% compute latitude 
lat = atan(tan(psi)/(1-f)); 
% compute radii of curvature for the latitude 
[rm,rp] = radii(a,flat,lat); 
  
% compute longitude and height 
lon = atan2(Y,X); 
h   = p/cos(lat) - rp; 
  
% Print results to screen 
fprintf('\n\nCartesian to Geographic - Bowring''s Iterative method'); 
fprintf('\n====================================================='); 
fprintf('\nEllipsoid:'); 
fprintf('\nsemi-major axis a = %13.3f',a); 
fprintf('\nflattening      f = 1/%13.9f',flat); 
fprintf('\nCartesian coordinates:'); 
fprintf('\nX = %13.3f',X); 
fprintf('\nY = %13.3f',Y); 
fprintf('\nZ = %13.3f',Z); 
fprintf('\nGeodetic coordinates:'); 
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[D,M,S] = DMS(lat*d2r); 
if D == 0 && lat < 0 
    fprintf('\nLatitude  =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nLatitude  = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
[D,M,S] = DMS(lon*d2r); 
if D == 0 && lon < 0 
    fprintf('\nLongitude =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nLongitude = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
fprintf('\nHeight    = %13.3f',h); 
fprintf('\nIterations    = %3d',count); 
fprintf('\n\n'); 
 

Help message for MATLAB function Cart2Geo_Bowring2.m 
 
>> help Cart2Geo_Bowring2 
  [lat,lon,h] = Cart2Geo_Bowring2(a,flat,X,Y,Z) 
    Function computes the latitude (lat), longitude (lon) and height (h) 
    of a point related to an ellipsoid defined by semi-major axis (a) 
    and denominator of flattening (flat) given Cartesian coordinates 
    X,Y,Z.  Latitude and longitude are returned as radians.  This function 
    uses Bowring's method for converting X,Y,Z to lat,lon,height and  
    Newton-Raphson iteration. 
 
 

Output from MATLAB function Cart2Geo_Bowring2.m 
 
>> d2r = 180/pi; 
>> a = 6378137; 
>> flat = 298.257222101; 
>> lat = -50/d2r; 
>> lon = -150/d2r; 
>> h = 10000; 
>> [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h); 
>> [X,Y,Z]' 
 
ans = 
 
         -3563081.36230554 
         -2057145.98367164 
         -4870449.48202417 
 
>> [lat,lon,h] = Cart2Geo_Bowring2(a,flat,X,Y,Z); 
 
Cartesian to Geographic - Bowring's Iterative method 
===================================================== 
Ellipsoid: 
semi-major axis a =   6378137.000 
flattening      f = 1/298.257222101 
Cartesian coordinates: 
X =  -3563081.362 
Y =  -2057145.984 
Z =  -4870449.482 
Geodetic coordinates: 
Latitude  =  -50  0  0.000000 (D M S) 
Longitude = -150  0  0.000000 (D M S) 
Height    =     10000.000 
Iterations    =   2 
 
>> 
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MATLAB function Cart2Geo_Lin.m 
 
function [lat,lon,h] = Cart2Geo_Lin(a,flat,X,Y,Z) 
% 
% [lat,lon,h] = Cart2Geo_Lin(a,flat,X,Y,Z) 
%   Function computes the latitude (lat), longitude (lon) and height (h) 
%   of a point related to an ellipsoid defined by semi-major axis (a) 
%   and denominator of flattening (flat) given Cartesian coordinates 
%   X,Y,Z.  Latitude and longitude are returned as radians.  This function 
%   uses Lin & Wang's method for converting X,Y,Z to lat,lon,height. 
  
%-------------------------------------------------------------------------- 
% Function:  Cart2Geo_Lin() 
% 
% Usage:     [lat,lon,h] = Cart2Geo_Lin(a,flat,X,Y,Z); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0   3 March 2008 
% 
% Purpose:    
%    Function Cart2Geo_Lin() will compute latitude, longitude (both in  
%    radians) and height of a  point related to an ellipsoid defined by  
%    semi-major axis (a) and denominator of flattening (flat) given  
%    Cartesian coordinates X,Y,Z. 
% 
% Variables: 
%    a       - semi-major axis of ellipsoid 
%    b       - semi-minor axis of ellipsoid 
%    count   - integer counter for number of iterations 
%    corrn   - correction to approximate value 
%    d2r     - degree to radian conversion factor = 57.29577951... 
%    e2      - 1st eccentricity squared 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    func    - function 
%    funcp   - derivative of function 
%    h       - height above ellipsoid 
%    lat     - latitude (radians) 
%    lon     - longitude (radians) 
%    p       - perpendicular distance from minor-axis of ellipsoid 
%    pQ      - perpendicular distance of Q on ellipsoid from minor-axis 
%    q       - multiplying factor 
%    ZQ      - Z-coord of Q on ellipsoid 
% 
% Remarks:    
%    This function uses Newton-Raphson Iteration, see Refences [1]. 
%    X,Y,Z are coords of P in space.  Q is the projection of P onto the  
%    reference ellipsoid via the normal.  XQ,YQ,ZQ are the coords of Q on 
%    the ellipsoid. 
% 
% References: 
% [1] Lin, K.C. & Wang, J., 1995, 'Transformation from geocentric to 
%       geodetic coordinates using Newton's iteration.', Bulletin 
%       Geodesique, Vol. 69, pp. 300-303. 
% [2] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY - PART A,  
%       School of Mathematical and Geospatial Sciences, RMIT University,  
%       Melbourne, AUSTRALIA, March 2008. 
  
%-------------------------------------------------------------------------- 
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% Set degree to radian conversion factor 
d2r = 180/pi; 
  
% calculate flattening f, semi-minor axis length b and e2 
f  = 1/flat; 
b  = a*(1-f); 
e2 = f*(2-f); 
  
% compute powers of a and b 
a2   = a*a; 
a4   = a2*a2; 
b2   = b*b; 
b4   = b2*b2; 
ab   = a*b; 
a2b2 = a2*b2; 
  
% compute powers of X,Y,Z coords of P 
X2 = X*X; 
Y2 = Y*Y; 
Z2 = Z*Z; 
p2 = X2 + Y2; 
p  = sqrt(p2); 
  
% compute 1st approximation of multiplying factor q 
A = a2*Z2 + b2*p2; 
q = (ab*sqrt(A)*A - a2b2*A)/(2*(a4*Z2 + b4*p2)); 
  
% Newton-Raphson Iteration 
% The test for convergence if when F approaches zero. 
count = 0; 
while 1 
    %   Compute value of function and its derivative for approximate latitude     
    twoq = 2*q; 
    A1   = a2+twoq; 
    A2   = A1*A1; 
    A3   = A2*A1; 
    B1   = b2+twoq; 
    B2   = B1*B1; 
    B3   = B2*B1; 
    F    = a2*p2/A2 + b2*Z2/B2 - 1; 
    % Test to see if F is sufficiently close to zero, and if so, then break 
    % out of the while loop. 
    if abs(F)<1e-12 
        break; 
    end; 
    dF   = -4*(a2*p2/A3 + b2*Z2/B3);  
    corrn = F/dF; 
    new_q = q - corrn; 
    count = count+1; 
    q = new_q; 
    % If there are more thna five iterations then break out of while loop. 
    if count>5 
        break; 
    end; 
end; 
% compute Z- and p-coord of Q on the ellipsoid 
twoq = 2*q; 
pQ = a2*p/(a2+twoq); 
ZQ = b2*Z/(b2+twoq); 
  
% compute latitude, longitude and height 
lat = atan(ZQ/(pQ*(1-e2))); 
lon = atan2(Y,X); 
h   = sqrt((p-pQ)^2+(Z-ZQ)^2); 
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if p+abs(Z)<pQ+abs(ZQ) 
    h = -h; 
end; 
  
% Print results to screen 
fprintf('\n\nCartesian to Geographic - Lin & Wang'); 
fprintf('\n===================================='); 
fprintf('\nEllipsoid:'); 
fprintf('\nsemi-major axis a = %13.3f',a); 
fprintf('\nflattening      f = 1/%13.9f',flat); 
fprintf('\nCartesian coordinates:'); 
fprintf('\nX = %13.3f',X); 
fprintf('\nY = %13.3f',Y); 
fprintf('\nZ = %13.3f',Z); 
fprintf('\nGeodetic coordinates:'); 
[D,M,S] = DMS(lat*d2r); 
if D == 0 && lat < 0 
    fprintf('\nLatitude  =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nLatitude  = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
[D,M,S] = DMS(lon*d2r); 
if D == 0 && lon < 0 
    fprintf('\nLongitude =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nLongitude = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
fprintf('\nHeight    = %13.3f',h); 
fprintf('\nIterations    = %3d',count); 
fprintf('\n\n'); 
 
 

Help message for MATLAB function Cart2Geo_Lin.m 
 
>> help Cart2Geo_Lin 
  
  [lat,lon,h] = Cart2Geo_Lin(a,flat,X,Y,Z) 
    Function computes the latitude (lat), longitude (lon) and height (h) 
    of a point related to an ellipsoid defined by semi-major axis (a) 
    and denominator of flattening (flat) given Cartesian coordinates 
    X,Y,Z.  Latitude and longitude are returned as radians.  This function 
    uses Lin & Wang's method for converting X,Y,Z to lat,lon,height. 
 
>> 
 

Output from MATLAB function Cart2Geo_Lin.m 
 
>> d2r = 180/pi; 
>> a = 6378137; 
>> flat = 298.257222101; 
>> lat = -50/d2r; 
>> lon = -150/d2r; 
>> h = 10000; 
>> [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h); 
>> [X,Y,Z]' 
 
ans = 
 
         -3563081.36230554 
         -2057145.98367164 
         -4870449.48202417 
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>> [lat,lon,h] = Cart2Geo_Lin(a,flat,X,Y,Z); 
 
 
Cartesian to Geographic - Lin & Wang 
==================================== 
Ellipsoid: 
semi-major axis a =   6378137.000 
flattening      f = 1/298.257222101 
Cartesian coordinates: 
X =  -3563081.362 
Y =  -2057145.984 
Z =  -4870449.482 
Geodetic coordinates: 
Latitude  =  -49 59 60.000000 (D M S) 
Longitude = -150  0  0.000000 (D M S) 
Height    =     10000.000 
Iterations    =   1 
 
>> 
 
 
 

MATLAB function Cart2Geo_Paul.m 
 
function [lat,lon,h] = Cart2Geo_Paul(a,flat,X,Y,Z) 
% 
% [lat,lon,h] = Cart2Geo_Paul(a,flat,X,Y,Z) 
%   Function computes the latitude (lat), longitude (lon) and height (h) 
%   of a point related to an ellipsoid defined by semi-major axis (a) 
%   and denominator of flattening (flat) given Cartesian coordinates 
%   X,Y,Z.  Latitude and longitude are returned as radians.  This function 
%   uses Paul's direct method for converting X,Y,Z to lat,lon,height. 
  
%-------------------------------------------------------------------------- 
% Function:  Cart2Geo_Paul() 
% 
% Usage:     [lat,lon,h] = Cart2Geo_Paul(a,flat,X,Y,Z); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0   3 March 2008 
% 
% Purpose:    
%    Function Cart2Geo_Paul() will compute latitude, longitude (both in  
%    radians) and height of a  point related to an ellipsoid defined by  
%    semi-major axis (a) and denominator of flattening (flat) given  
%    Cartesian coordinates X,Y,Z. 
% 
% Variables: 
%    a       - semi-major axis of ellipsoid 
%    a2      - a-squared 
%    alpha   - variable in Paul's method 
%    beta    - variable in Pauls method 
%    d2r     - degree to radian conversion factor = 57.29577951... 
%    e2      - 1st eccentricity squared 
%    e4      - e2-squared 
%    f       - flattening of ellipsoid 
%    flat    - denominator of flattening f = 1/flat 
%    h       - height above ellipsoid 
%    lat     - latitude (radians) 
%    lon     - longitude (radians) 
%    p       - perpendicular distance from minor-axis of ellipsoid 
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%    p2      - p-squared 
%    q       - numeric term in cubic equation in u 
%    t       - single real-root of cubic equation in t 
%    u       - single real-root of cubic equation in u 
%    X,Y,Z   - Cartesian coordinates 
%    X2,Y2,Z2  powers of X,Y,Z coords 
%    zeta    - solution of quartic in terms of t 
% 
% Remarks:    
%    This function uses Pauls' direct method, see Refences [1] & [2]. 
% 
% References: 
% [1] Paul, M.K., 1973, 'A note on computation of geodetic coordinates grom 
%       geocentric (cartesian) coordinates', Bulletin Geodesique, No. 108,  
%       pp. 134-139. 
% [2] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY - PART A,  
%       School of Mathematical and Geospatial Sciences, RMIT University,  
%       Melbourne, AUSTRALIA, March 2008. 
  
%-------------------------------------------------------------------------- 
  
% Set degree to radian conversion factor 
d2r = 180/pi; 
  
% calculate f, e2 and a-squared 
f  = 1/flat; 
e2 = f*(2-f); 
e4 = e2*e2; 
a2 = a*a; 
  
% compute powers of X,Y,Z coords of P 
X2 = X*X; 
Y2 = Y*Y; 
Z2 = Z*Z; 
p2 = X2 + Y2; 
p  = sqrt(p2); 
  
% compute alpha, beta and squared values 
alpha  = (p2+a2*e4)/(1-e2);   % ref [2], eqn (314), p.103 
alpha2 = alpha*alpha; 
beta   = (p2-a2*e4)/(1-e2);   % ref [2], eqn (310), p.102 
beta2  = beta*beta; 
  
% compute q 
A  = beta+Z2; 
q  = 1 + (27*Z2*(alpha2-beta2))/(2*A*A*A);  % ref [2], eqn (324), p.105 
q2 = q*q; 
  
% compute u 
B = sqrt(q2-1); 
u = 1/2*((q+B)^(1/3) + (q-B)^(1/3));  % ref [2], eqn (323), p. 104 
  
% compute t 
t = A/6*u + Z2/12 - beta/6;  % ref [2], eqn (321), p. 104 
  
% compute zeta 
root1 = sqrt(t); 
if Z<0 
    root1 = -root1; 
end; 
root2 = sqrt(Z2/4 - beta/2 - t + alpha*Z/4/root1);  
if Z<0 
    root2 = -root2; 
end; 
zeta = root1 + root2; 
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% compute latitude, longitude and height 
lat = atan((zeta + Z/2)/p); 
  
% compute radii of curvature for the latitude 
[rm,rp] = radii(a,flat,lat); 
  
% compute longitude and height 
lon = atan2(Y,X); 
h   = p/cos(lat) - rp; 
  
% Print results to screen 
fprintf('\n\nCartesian to Geographic - Paul'); 
fprintf('\n=============================='); 
fprintf('\nEllipsoid:'); 
fprintf('\nsemi-major axis a = %13.3f',a); 
fprintf('\nflattening      f = 1/%13.9f',flat); 
fprintf('\nCartesian coordinates:'); 
fprintf('\nX = %13.3f',X); 
fprintf('\nY = %13.3f',Y); 
fprintf('\nZ = %13.3f',Z); 
fprintf('\nGeodetic coordinates:'); 
[D,M,S] = DMS(lat*d2r); 
if D == 0 && lat < 0 
    fprintf('\nLatitude  =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nLatitude  = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
[D,M,S] = DMS(lon*d2r); 
if D == 0 && lon < 0 
    fprintf('\nLongitude =  -0 %2d %9.6f (D M S)',M,S); 
else 
    fprintf('\nLongitude = %4d %2d %9.6f (D M S)',D,M,S); 
end; 
fprintf('\nHeight    = %13.3f',h); 
fprintf('\n\n'); 
 
 
 

Help message for MATLAB function Cart2Geo_Paul.m 
 
>> help Cart2Geo_Paul 
  
  [lat,lon,h] = Cart2Geo_Paul(a,flat,X,Y,Z) 
    Function computes the latitude (lat), longitude (lon) and height (h) 
    of a point related to an ellipsoid defined by semi-major axis (a) 
    and denominator of flattening (flat) given Cartesian coordinates 
    X,Y,Z.  Latitude and longitude are returned as radians.  This function 
    uses Paul's direct method for converting X,Y,Z to lat,lon,height. 
 
>> 
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Output from MATLAB function Cart2Geo_Paul.m 
 
>> d2r = 180/pi; 
>> a = 6378137; 
>> flat = 298.257222101; 
>> lat = -50/d2r; 
>> lon = -150/d2r; 
>> h = 10000; 
>> [X,Y,Z] = Geo2Cart(a,flat,lat,lon,h); 
>> [X,Y,Z]' 
 
ans = 
 
         -3563081.36230554 
         -2057145.98367164 
         -4870449.48202417 
 
 
>> [lat,lon,h] = Cart2Geo_Paul(a,flat,X,Y,Z); 
 
 
Cartesian to Geographic - Paul 
============================== 
Ellipsoid: 
semi-major axis a =   6378137.000 
flattening      f = 1/298.257222101 
Cartesian coordinates: 
X =  -3563081.362 
Y =  -2057145.984 
Z =  -4870449.482 
Geodetic coordinates: 
Latitude  =  -50  0  0.000000 (D M S) 
Longitude = -150  0  0.000000 (D M S) 
Height    =     10000.000 
 
>> 
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MATLAB function radii.m 

 

MATLAB functions Geo2Cart.m Cart2Geo_Substitution.m Cart2Geo_Newton.m 

Cart2Geo_Bowring.m Cart2Geo_Lin.m and Cart2Geo_Paul.m call function DMS.m to 

convert decimal degrees to degrees, minutes and seconds (for printing).  This function has 

been printed in a previous section.  Also, all the functions, except Cart2Geo_Lin.m call 

function radii.m to compute ellipsoid radii of curvature.  This function is shown below. 
 
 

MATLAB function radii.m 
 
function [rm,rp] = radii(a,flat,lat) 
% 
% [rm,rp]=radii(a,flat,lat)  Function computes radii of curvature in 
%   the meridian and prime vertical planes (rm and rp respectively) at a 
%   point whose latitude (lat) is known on an ellipsoid defined by 
%   semi-major axis (a) and denominator of flattening (flat). 
%   Latitude must be in radians. 
%   Example: [rm,rp] = radii(6378137,298.257222101,-0.659895044); 
%            should return rm = 6359422.96233327 metres and  
%                          rp = 6386175.28947842 metres 
%            at latitude -37 48 33.1234 (DMS) on the GRS80 ellipsoid 
  
%-------------------------------------------------------------------------- 
% Function:  radii(a,flat,lat) 
% 
% Syntax:    [rm,rp] = radii(a,flat,lat); 
% 
% Author:    R.E.Deakin,  
%            School of Mathematical & Geospatial Sciences, RMIT University 
%            GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA. 
%            email: rod.deakin@rmit.edu.au 
%            Version  1.0  1 August 2003 
%            Version  2.0  6 April  2006 
%            Version  3.0  9 February 2008 
% 
% Purpose:   Function radii() will compute the radii of curvature in 
%            the meridian and prime vertical planes, rm and rp respectively 
%            for the point whose latitude (lat) is given for an ellipsoid 
%            defined by its semi-major axis (a) and denominator of  
%            flattening (flat). 
% 
% Return value: Function radii() returns rm and rp 
% 
% Variables:  
%  a      - semi-major axis of spheroid 
%  c      - polar radius of curvature 
%  c1     - cosine of latitude 
%  c2     - cosine of latitude squared 
%  e2     - 1st-eccentricity squared 
%  ep2    - 2nd-eccentricity squared (ep2 means e-prime-squared) 
%  f      - flattening of ellipsoid 
%  lat    - latitude of point (radians) 
%  rm     - radius of curvature in the meridian plane 
%  rp     - radius of curvature in the prime vertical plane 
%  V      - latitude function defined by V-squared = sqrt(1 + ep2*c2) 
%  V2,V3  - powers of V 
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% 
% Remarks:    
%  Formulae are given in [1] (section 1.3.9, page 85) and in  
%  [2] (Chapter 2, p. 2-10) in a slightly different form. 
%   
% References: 
% [1] Deakin, R.E. and Hunter, M.N., 2008, GEOMETRIC GEODESY – PART A, 
%       School of Mathematical and Geospatial Sciences, RMIT University, 
%       Melbourne, AUSTRALIA, March 2008. 
% [2] THE GEOCENTRIC DATUM OF AUSTRALIA TECHNICAL MANUAL, Version 2.2, 
%       Intergovernmental Committee on Surveying and Mapping (ICSM),  
%       February 2002 (www.anzlic.org.au/icsm/gdatum) 
%-------------------------------------------------------------------------- 
  
% compute flattening f, polar radius of curvature c and 2nd-eccentricity  
% squared ep2  
f   = 1/flat; 
c   = a/(1-f); 
e2  = f*(2-f); 
ep2 = e2/(1-e2); 
  
% calculate the square of the sine of the latitude 
c1 = cos(lat); 
c2 = c1*c1; 
  
% compute latitude function V 
V2 = 1+(ep2*c2); 
V  = sqrt(V2); 
V3 = V2*V; 
  
% compute radii of curvature 
rm = c/V3; 
rp = c/V; 
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